Partial atomic charges are used in molecular mechanics force fields to compute the electrostatic interaction energy using Coulomb's law, even though this leads to substantial failures for anisotropic charge distributions.1 Partial charges are also often used for a qualitative understanding of the structure and reactivity of molecules.
Occasionally, δδ+ is used to indicate a partial charge that is less positively charged than δ+ (likewise for δδ−) in cases where it is relevant to do so.2 This can be extended to δδδ± to indicate even weaker partial charges as well. Generally, a single δ+ (or δ−) is sufficient for most discussions of partial charge in organic chemistry.
Partial atomic charges can be used to quantify the degree of ionic versus covalent bonding of any compound across the periodic table. The necessity for such quantities arises, for example, in molecular simulations to compute bulk and surface properties in agreement with experiment. Evidence for chemically different compounds shows that available experimental data and chemical understanding lead to justified atomic charges.3 Atomic charges for a given compound can be derived in multiple ways, such as:
The discussion of individual compounds in prior work has shown convergence in atomic charges, i.e., a high level of consistency between the assigned degree of polarity and the physical-chemical properties mentioned above. The resulting uncertainty in atomic charges is ±0.1e to ±0.2e for highly charged compounds, and often <0.1e for compounds with atomic charges below ±1.0e. Often, the application of one or two of the above concepts already leads to very good values, especially taking into account a growing library of experimental benchmark compounds and compounds with tested force fields.4
The published research literature on partial atomic charges varies in quality from extremely poor to extremely well-done. Although a large number of different methods for assigning partial atomic charges from quantum chemistry calculations have been proposed over many decades, the vast majority of proposed methods do not work well across a wide variety of material types.56 Only as recently as 2016 was a method for theoretically computing partial atomic charges developed that performs consistently well across an extremely wide variety of material types.78 All of the earlier methods had fundamental deficiencies that prevented them from assigning accurate partial atomic charges in many materials.910 Mulliken and Löwdin partial charges are physically unreasonable, because they do not have a mathematical limit as the basis set is improved towards completeness.11 Hirshfeld partial charges are usually too low in magnitude.12 Some methods for assigning partial atomic charges do not converge to a unique solution.13 In some materials, atoms in molecules analysis yields non-nuclear attractors describing electron density partitions that cannot be assigned to any atom in the material; in such cases, atoms in molecules analysis cannot assign partial atomic charges.14
According to Cramer (2002), partial charge methods can be divided into four classes:15
The following is a detailed list of methods, partly based on Meister and Schwarz (1994).16
Kramer, Christian; Spinn, Alexander; Liedl, Klaus R. (2014). "Charge Anisotropy: Where Atomic Multipoles Matter Most". Journal of Chemical Theory and Computation. 10 (10): 4488–4496. doi:10.1021/ct5005565. PMID 26588145. /wiki/Doi_(identifier) ↩
"Basic principles in organic chemistry: Steric and electronic effects in a covalent bond – Open Teaching Project". Retrieved 2020-10-11. http://padakshep.org/otp/subjects/chemistry/organic-chemistry/steric-electronic-effects/ ↩
H. Heinz; U. W. Suter (2004). "Atomic Charges for Classical Simulations of Polar Systems". J. Phys. Chem. B. 108 (47): 18341–18352. doi:10.1021/jp048142t. /wiki/Doi_(identifier) ↩
H. Heinz; T. Z. Lin; R. K. Mishra; F. S. Emami (2013). "Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field". Langmuir. 29 (6): 1754–1765. doi:10.1021/la3038846. PMID 23276161. /wiki/Doi_(identifier) ↩
T. A. Manz; N. Gabaldon-Limas (2016). "Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology". RSC Adv. 6 (53): 47771–47801. Bibcode:2016RSCAd...647771M. doi:10.1039/c6ra04656h. S2CID 102206475. https://zenodo.org/record/895508 ↩
N. Gabaldon-Limas; T. A. Manz (2016). "Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials". RSC Adv. 6 (51): 45727–45747. Bibcode:2016RSCAd...645727L. doi:10.1039/c6ra05507a. S2CID 102242157. https://doi.org/10.1039%2Fc6ra05507a ↩
A. E. Reed; R. B. Weinstock; F. Weinhold (1985). "Natural population analysis". J. Chem. Phys. 83 (2): 735–746. Bibcode:1985JChPh..83..735R. doi:10.1063/1.449486. /wiki/Bibcode_(identifier) ↩
E. R. Davidson; S. Chakravorty (1992). "A test of the Hirshfeld definition of atomic charges and moments". Theor. Chim. Acta. 83 (5–6): 319–330. doi:10.1007/BF01113058. S2CID 93652756. /wiki/Doi_(identifier) ↩
C. Gatti; P. Fantucci; G. Pacchioni (1987). "Charge density topological study of bonding in lithium clusters". Theor. Chim. Acta. 72 (5–6): 433–458. doi:10.1007/BF01192234. S2CID 101073677. /wiki/Doi_(identifier) ↩
C. J. Cramer (2002). Essentials of Computational Chemistry: Theories and Methods. Wiley. pp. 278–289. ↩
J. Meister; W. H. E. Schwarz (1994). "Principal Components of Ionicity". J. Phys. Chem. 98 (33): 8245–8252. doi:10.1021/j100084a048. /wiki/Doi_(identifier) ↩
Löwdin, Per‐Olov (1950). "On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals". The Journal of Chemical Physics. 18 (3): 365–375. Bibcode:1950JChPh..18..365L. doi:10.1063/1.1747632. Retrieved 2021-01-21. https://doi.org/10.1063/1.1747632 ↩
A. V. Marenich; S. V. Jerome; C. J. Cramer; D. G. Truhlar (2012). "Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases". J. Chem. Theory Comput. 8 (2): 527–541. doi:10.1021/ct200866d. PMID 26596602. https://doi.org/10.1021%2Fct200866d ↩
F. L. Hirshfeld (1977). "Bonded-atom fragments for describing molecular charge densities". Theor. Chim. Acta. 44 (2): 129–138. doi:10.1007/BF00549096. S2CID 98677294. /wiki/Doi_(identifier) ↩
E. N. Maslen; M. A. Spackman (1985). "Atomic charges and electron density partitioning". Aust. J. Phys. 38 (3): 273–287. Bibcode:1985AuJPh..38..273M. doi:10.1071/PH850273. https://doi.org/10.1071%2FPH850273 ↩
T. A. Manz; D. S. Sholl (2012). "Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing the Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials". J. Chem. Theory Comput. 8 (8): 2844–2867. doi:10.1021/ct3002199. PMID 26592125. /wiki/Doi_(identifier) ↩
P. J. Stephens; K. J. Jalkanen; R. W. Kawiecki (1990). "Theory of vibrational rotational strengths: comparison of a priori theory and approximate models". J. Am. Chem. Soc. 112 (18): 6518–6529. doi:10.1021/ja00174a011. /wiki/Doi_(identifier) ↩
Ph. Ghosez; J.-P. Michenaud; X. Gonze (1998). "Dynamical atomic charges: The case of ABO3 compounds". Phys. Rev. B. 58 (10): 6224–6240. arXiv:cond-mat/9805013. Bibcode:1998PhRvB..58.6224G. doi:10.1103/PhysRevB.58.6224. S2CID 119089568. /wiki/ArXiv_(identifier) ↩
C. I. Bayly; P. Cieplak; W. Cornell; P. A. Kollman (1993). "A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model". J. Phys. Chem. 97 (40): 10269–10280. doi:10.1021/j100142a004. /wiki/Doi_(identifier) ↩