Let R be a ring (associative, with 1), let M be a (left) module over R, let P be a submodule of M and let i: P → M be the natural injective map. Then P is a pure submodule of M if, for any (right) R-module X, the natural induced map idX ⊗ i : X ⊗ P → X ⊗ M (where the tensor products are taken over R) is injective.
Analogously, a short exact sequence
of (left) R-modules is pure exact if the sequence stays exact when tensored with any (right) R-module X. This is equivalent to saying that f(A) is a pure submodule of B.
Purity of a submodule can also be expressed element-wise; it is really a statement about the solvability of certain systems of linear equations. Specifically, P is pure in M if and only if the following condition holds: for any m-by-n matrix (aij) with entries in R, and any set y1, ..., ym of elements of P, if there exist elements x1, ..., xn in M such that
then there also exist elements x1′, ..., xn′ in P such that
Another characterization is: a sequence is pure exact if and only if it is the filtered colimit (also known as direct limit) of split exact sequences
Suppose2
is a short exact sequence of R-modules, then:
If 0 ⟶ A ⟶ f B ⟶ g C ⟶ 0 {\displaystyle 0\longrightarrow A\,\ {\stackrel {f}{\longrightarrow }}\ B\,\ {\stackrel {g}{\longrightarrow }}\ C\longrightarrow 0} is pure-exact, and F is a finitely presented R-module, then every homomorphism from F to C can be lifted to B, i.e. to every u : F → C there exists v : F → B such that gv=u.
For abelian groups, this is proved in Fuchs (2015, Ch. 5, Thm. 3.4) - Fuchs, László (2015), Abelian Groups, Springer Monographs in Mathematics, Springer, ISBN 9783319194226 ↩
Lam 1999, p. 154. - Lam, Tsit-Yuen (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98428-5, MR 1653294 https://mathscinet.ams.org/mathscinet-getitem?mr=1653294 ↩
Lam 1999, p. 162. - Lam, Tsit-Yuen (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98428-5, MR 1653294 https://mathscinet.ams.org/mathscinet-getitem?mr=1653294 ↩