Consider a function f : R n → R {\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } and a set of sample points S = { ( x i , f i ) | f ( x i ) = f i } {\displaystyle S=\{(x_{i},f_{i})|f(x_{i})=f_{i}\}} . Then, the moving least square approximation of degree m {\displaystyle m} at the point x {\displaystyle x} is p ~ ( x ) {\displaystyle {\tilde {p}}(x)} where p ~ {\displaystyle {\tilde {p}}} minimizes the weighted least-square error
over all polynomials p {\displaystyle p} of degree m {\displaystyle m} in R n {\displaystyle \mathbb {R} ^{n}} . θ ( s ) {\displaystyle \theta (s)} is the weight and it tends to zero as s → ∞ {\displaystyle s\to \infty } .
In the example θ ( s ) = e − s 2 {\displaystyle \theta (s)=e^{-s^{2}}} . The smooth interpolator of "order 3" is a quadratic interpolator.
Liang, Jian; Zhao, Hongkai (January 2013). "Solving Partial Differential Equations on Point Clouds". SIAM Journal on Scientific Computing. 35 (3): A1461 – A1486. Bibcode:2013SJSC...35A1461L. doi:10.1137/120869730. S2CID 9984491. /wiki/Bibcode_(identifier) ↩
Gross, B. J.; Trask, N.; Kuberry, P.; Atzberger, P. J. (15 May 2020). "Meshfree methods on manifolds for hydrodynamic flows on curved surfaces: A Generalized Moving Least-Squares (GMLS) approach". Journal of Computational Physics. 409: 109340. arXiv:1905.10469. Bibcode:2020JCoPh.40909340G. doi:10.1016/j.jcp.2020.109340. S2CID 166228451. /wiki/ArXiv_(identifier) ↩
Gross, B. J.; Kuberry, P.; Atzberger, P. J. (15 March 2022). "First-passage time statistics on surfaces of general shape: Surface PDE solvers using Generalized Moving Least Squares (GMLS)". Journal of Computational Physics. 453: 110932. arXiv:2102.02421. Bibcode:2022JCoPh.45310932G. doi:10.1016/j.jcp.2021.110932. ISSN 0021-9991. S2CID 231802303. https://doi.org/10.1016/j.jcp.2021.110932 ↩
Wang, Hong-Yan; Xiang, Dao-Hong; Zhou, Ding-Xuan (1 March 2010). "Moving least-square method in learning theory". Journal of Approximation Theory. 162 (3): 599–614. doi:10.1016/j.jat.2009.12.002. ISSN 0021-9045. https://doi.org/10.1016/j.jat.2009.12.002 ↩
Trask, Nathaniel; Patel, Ravi G.; Gross, Ben J.; Atzberger, Paul J. (13 September 2019). "GMLS-Nets: A framework for learning from unstructured data". arXiv:1909.05371 [cs.LG]. /wiki/ArXiv_(identifier) ↩