Within the field of microbial ecology, oligonucleotide probes are used in order to determine the presence of microbial species, genera, or microorganisms classified on a more broad level, such as bacteria, archaea, and eukaryotes via fluorescence in situ hybridization (FISH).2 rRNA probes have enabled scientists to visualize microorganisms, yet to be cultured in laboratory settings, by retrieval of rRNA sequences directly from the environment.3 Examples of these types of microorganisms include:
In some instances, differentiation between species may be problematic when using 16S rRNA sequences due to similarity. In such instances, 23S rRNA may be a better alternative.6 The global standard library of rRNA sequences is constantly becoming larger and continuously being updated, and thus the possibility of a random hybridization event between a specifically-designed probe (based on complete and current data from a range of test organisms) and an undesired/unknown target organism cannot be easily dismissed.7 On the contrary, it is plausible that there exist microorganisms, yet to be identified, which are phylogenetically members of a probe target group, but have partial or near-perfect target sites, usually applies when designing group-specific probes.
Probably the greatest practical limitation to this technique is the lack of available automation.8
In forensic science, hybridization probes are used, for example, for detection of short tandem repeats (microsatellite) regions9 and in restriction fragment length polymorphism (RFLP) methods, all of which are widely used as part of DNA profiling analysis.
"Nucleic Acid Hybridizations". www.ndsu.edu. Retrieved 2017-05-26. https://www.ndsu.edu/pubweb/~mcclean/plsc731/dna/dna6.htm ↩
Amann R, Ludwig W (2000). "Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology". FEMS Microbiology Reviews. 24 (5): 555–565. doi:10.1111/j.1574-6976.2000.tb00557.x. PMID 11077149. https://doi.org/10.1111%2Fj.1574-6976.2000.tb00557.x ↩
Amann, R.; Ludwig, W.; Schleifer, K.-H. (1995). "Phylogenetic identification and in situ detection of individual microbial cells without cultivation". Microbiological Reviews. 59 (1): 143–169. doi:10.1128/MMBR.59.1.143-169.1995. PMC 239358. PMID 7535888. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239358 ↩
Glöckner, F.O.; Babenzien H.D.; Amann R. (1998). "Phylogeny and identification in situ of Nevskia ramosa". Appl. Environ. Microbiol. 64 (5): 1895–1901. Bibcode:1998ApEnM..64.1895G. doi:10.1128/AEM.64.5.1895-1901.1998. PMC 106248. PMID 9572969. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC106248 ↩
Glöckner, F.O.; Babenzien H.D.; Amann R. (1999). "Phylogeny and diversity of Achromatium oxaliferum". Syst. Appl. Microbiol. 22 (1): 28–38. doi:10.1016/s0723-2020(99)80025-3. PMID 10188276. /wiki/Doi_(identifier) ↩
Fox, G.E.; Wisotzkey, J.D.; Jurtshuk Jr., P. (1992). "How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity". Int. J. Syst. Bacteriol. 42 (1): 166–170. doi:10.1099/00207713-42-1-166. PMID 1371061. https://doi.org/10.1099%2F00207713-42-1-166 ↩
Olsen, G.J.; Lane, D.J.; Giovannoni, S.J.; Pace, N.R.; Stahl, D.A. (1986). "Microbial ecology and evolution: a ribosomal RNA approach". Annu. Rev. Microbiol. 40: 337–365. doi:10.1146/annurev.mi.40.100186.002005. PMID 2430518. /wiki/Doi_(identifier) ↩
Tytgat, Olivier (2021). "STRide probes: Single-labeled short tandem repeat identification probes" (PDF). Biosensors and Bioelectronics. 180: 113135. doi:10.1016/j.bios.2021.113135. PMID 33690100. https://biblio.ugent.be/publication/8717666/file/8717669.pdf ↩