Let Ω {\displaystyle \Omega } be a set and f : 2 Ω → R {\displaystyle f\colon 2^{\Omega }\rightarrow \mathbb {R} } be a set function, where 2 Ω {\displaystyle 2^{\Omega }} denotes the power set of Ω {\displaystyle \Omega } . The function f is superadditive if for any pair of disjoint subsets S , T {\displaystyle S,T} of Ω {\displaystyle \Omega } , we have f ( S ) + f ( T ) ≤ f ( S ∪ T ) {\displaystyle f(S)+f(T)\leq f(S\cup T)} .1
Nimrod Megiddo (1988). "ON FINDING ADDITIVE, SUPERADDITIVE AND SUBADDITIVE SET-FUNCTIONS SUBJECT TO LINEAR INEQUALITIES" (PDF). Retrieved 21 December 2015. http://theory.stanford.edu/~megiddo/pdf/Finding_supperadditiveX.pdf ↩