Connexin 30 is prevalent in the two distinct gap junction systems found in the cochlea: the epithelial cell gap junction network, which couple non-sensory epithelial cells, and the connective tissue gap junction network, which couple connective tissue cells. Gap junctions serve the important purpose of recycling potassium ions that pass through hair cells during mechanotransduction back to the endolymph.
Astrocytes play a crucial role in synaptic physiology and information processing in the brain. A key characteristic of astrocytes is their expression of Cx30, which influences cognitive processes by shaping synaptic and network activities. This Cx-mediated astroglial network regulates the efficiency of extracellular potassium (K+) and glutamate clearance at synapses, as well as the long-distance trafficking of energy metabolites to fuel active synapses. However, Cxs do not only form gap junction channels with other astrocytes; they can also mediate direct exchange with the extracellular space when forming hemichannels.
Cx30 protein levels set the size of astrocytic networks, and can be modulated by neuronal activity, indicating a close relationship between astrocytic network size and the activation of underlying neuronal networks. However, this modulation is complex, as it differentially impacts principal cells and interneurons. Additionally, Cx30 can also act via other mechanisms, such as signaling and protein interactions. Recent research has shown that the increase in Cx30 levels between P10 to P50 controls the closure of the critical period in the mouse visual cortex through a signaling pathway that regulates the extracellular matrix and interneuron maturation.
Connexin 30 (Cx30) appears to play a crucial role in regulating sleep and wakefulness, potentially through its involvement in circadian rhythm generation, response to sleep pressure, and modulation of astrocyte morphology and function.
Research has shown that Cx30 and Connexin 43 (Cx43) exhibit a time-of-day dependent expression in the mouse suprachiasmatic nucleus (SCN), the central circadian rhythm generator. These connexins contribute to the electric coupling of SCN neurons and astrocytic-neuronal signaling that regulates rhythmic SCN neuronal activity.
Interestingly, the fluctuation of Cx30 protein expression strongly depends on the light-dark cycle, which suggests that Cx30 may play a role in the circadian system's light entrainment and circadian rhythm generation.
In a study using Cx30 knockout mice, researchers have found that these mice exhibited a deficit in maintaining wakefulness during periods of high sleep pressure. They needed more stimuli to stay awake during gentle sleep deprivation and showed increased slow-wave sleep during instrumental sleep deprivation.
Moreover, neuronal activity has been found to increase hippocampal Cx30 protein levels via a posttranslational mechanism regulating lysosomal degradation, which translated at the functional level in the activation of Cx30 hemichannels and in Cx30-mediated remodeling of astrocyte morphology independently of gap junction biochemical coupling.
The clinical significance of this finding is that it can explain the mechanism of action of modafinil in its wakefulness-promoting properties. Modafinil may promote wakefulness by modulating the function of astroglial connexins, specifically connexin 30, which are proteins that facilitate intercellular communication and play a role in sleep-wake regulation. Connexins form channels that allow the exchange of ions and signaling molecules between cells. In the brain, they are mainly expressed by astrocytes, which help regulate neuronal activity. Modafinil increases the levels of connexin 30 in the cortex, enhancing communication between astrocytes and promoting wakefulness. Conversely, connexin 30 levels decrease during sleep, contributing to the transition from wakefulness to sleep. Flecainide, a drug that blocks astroglial connexins, can enhance the effects of modafinil on wakefulness and cognition, and reduce narcoleptic episodes in animal models. These findings suggest that modafinil may exert its therapeutic effects by modulating astroglial connexins.
Grifa A, Wagner CA, D'Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P (September 1999). "Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus". Nature Genetics. 23 (1): 16–8. doi:10.1038/12612. PMID 10471490. S2CID 29044968. /wiki/Doi_(identifier)
Kibar Z, Der Kaloustian VM, Brais B, Hani V, Fraser FC, Rouleau GA (April 1996). "The gene responsible for Clouston hidrotic ectodermal dysplasia maps to the pericentromeric region of chromosome 13q". Human Molecular Genetics. 5 (4): 543–7. doi:10.1093/hmg/5.4.543. PMID 8845850. https://doi.org/10.1093%2Fhmg%2F5.4.543
"Entrez Gene: GJB6 gap junction protein, beta 6". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10804
Zhao HB, Kikuchi T, Ngezahayo A, White TW (2006). "Gap junctions and cochlear homeostasis". The Journal of Membrane Biology. 209 (2–3): 177–86. doi:10.1007/s00232-005-0832-x. PMC 1609193. PMID 16773501. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1609193
Erbe CB, Harris KC, Runge-Samuelson CL, Flanary VA, Wackym PA (April 2004). "Connexin 26 and connexin 30 mutations in children with nonsyndromic hearing loss". The Laryngoscope. 114 (4): 607–11. doi:10.1097/00005537-200404000-00003. PMID 15064611. S2CID 25847431. /wiki/Doi_(identifier)
"Entrez Gene: GJB6 gap junction protein, beta 6". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10804
Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (April 2000). "Gap junction systems in the mammalian cochlea". Brain Research. Brain Research Reviews. 32 (1): 163–6. doi:10.1016/S0165-0173(99)00076-4. PMID 10751665. S2CID 11292387. /wiki/Doi_(identifier)
Lautermann J, ten Cate WJ, Altenhoff P, Grümmer R, Traub O, Frank H, Jahnke K, Winterhager E (December 1998). "Expression of the gap-junction connexins 26 and 30 in the rat cochlea". Cell and Tissue Research. 294 (3): 415–20. doi:10.1007/s004410051192. PMID 9799458. S2CID 24537527. /wiki/Doi_(identifier)
Yum SW, Zhang J, Valiunas V, Kanaporis G, Brink PR, White TW, Scherer SS (September 2007). "Human connexin26 and connexin30 form functional heteromeric and heterotypic channels". American Journal of Physiology. Cell Physiology. 293 (3): C1032-48. doi:10.1152/ajpcell.00011.2007. PMID 17615163. S2CID 16854059. /wiki/Doi_(identifier)
Ortolano S, Di Pasquale G, Crispino G, Anselmi F, Mammano F, Chiorini JA (December 2008). "Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear". Proceedings of the National Academy of Sciences of the United States of America. 105 (48): 18776–81. Bibcode:2008PNAS..10518776O. doi:10.1073/pnas.0800831105. PMC 2596232. PMID 19047647. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596232
Kikuchi T, Kimura RS, Paul DL, Adams JC (February 1995). "Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis". Anatomy and Embryology. 191 (2): 101–18. doi:10.1007/BF00186783. PMID 7726389. S2CID 24900775. /wiki/Doi_(identifier)
Forge A, Jagger DJ, Kelly JJ, Taylor RR (April 2013). "Connexin30-mediated intercellular communication plays an essential role in epithelial repair in the cochlea" (PDF). Journal of Cell Science. 126 (Pt 7): 1703–12. doi:10.1242/jcs.125476. PMID 23424196. http://discovery.ucl.ac.uk/1386320/1/Forge_Connexin30.pdf
Pannasch U, Vargová L, Reingruber J, Ezan P, Holcman D, Giaume C, Syková E, Rouach N (2011-05-17). "Astroglial networks scale synaptic activity and plasticity". Proceedings of the National Academy of Sciences. 108 (20): 8467–8472. Bibcode:2011PNAS..108.8467P. doi:10.1073/pnas.1016650108. ISSN 0027-8424. PMC 3100942. PMID 21536893. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100942
Pannasch U, Vargová L, Reingruber J, Ezan P, Holcman D, Giaume C, Syková E, Rouach N (2011-05-17). "Astroglial networks scale synaptic activity and plasticity". Proceedings of the National Academy of Sciences. 108 (20): 8467–8472. Bibcode:2011PNAS..108.8467P. doi:10.1073/pnas.1016650108. ISSN 0027-8424. PMC 3100942. PMID 21536893. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100942
Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008-12-05). "Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission". Science. 322 (5907): 1551–1555. Bibcode:2008Sci...322.1551R. doi:10.1126/science.1164022. ISSN 0036-8075. PMID 19056987. https://www.science.org/doi/10.1126/science.1164022
Chever O, Lee CY, Rouach N (2014-08-20). "Astroglial Connexin43 Hemichannels Tune Basal Excitatory Synaptic Transmission". The Journal of Neuroscience. 34 (34): 11228–11232. doi:10.1523/JNEUROSCI.0015-14.2014. ISSN 0270-6474. PMC 6615508. PMID 25143604. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615508
Hardy E, Cohen-Salmon M, Rouach N, Rancillac A (2021). "Astroglial Cx30 differentially impacts synaptic activity from hippocampal principal cells and interneurons". Glia. 69 (9): 2178–2198. doi:10.1002/glia.24017. ISSN 0894-1491. PMID 33973274. Cx30 alters specific properties of certain subsets of CA1 interneurons, such as resting membrane potential and sag ratio, while other parameters, such as action potential threshold and saturation frequency, were more frequently altered across different classes of neurons. The excitation-inhibition balance was also differentially and selectively modulated among the various neuron subtypes. Therefore, astrocytes, via Cx30, actively modulate both excitatory and inhibitory synapses in the hippocampus. https://onlinelibrary.wiley.com/doi/10.1002/glia.24017
Ribot J, Breton R, Calvo CF, Moulard J, Ezan P, Zapata J, Samama K, Moreau M, Bemelmans AP, Sabatet V, Dingli F, Loew D, Milleret C, Billuart P, Dallérac G (2021-07-02). "Astrocytes close the mouse critical period for visual plasticity". Science. 373 (6550): 77–81. Bibcode:2021Sci...373...77R. doi:10.1126/science.abf5273. ISSN 0036-8075. PMID 34210880. https://www.science.org/doi/10.1126/science.abf5273
Hardy E, Moulard J, Walter A, Ezan P, Bemelmans AP, Mouthon F, Charvériat M, Rouach N, Rancillac A (2023-04-11). Eroglu C (ed.). "Upregulation of astroglial connexin 30 impairs hippocampal synaptic activity and recognition memory". PLOS Biology. 21 (4): e3002075. doi:10.1371/journal.pbio.3002075. ISSN 1545-7885. PMC 10089355. PMID 37040348. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089355
Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Söhl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (January 2003). "Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential". Human Molecular Genetics. 12 (1): 13–21. doi:10.1093/hmg/ddg001. PMID 12490528. https://doi.org/10.1093%2Fhmg%2Fddg001
Kudo T, Kure S, Ikeda K, Xia AP, Katori Y, Suzuki M, Kojima K, Ichinohe A, Suzuki Y, Aoki Y, Kobayashi T, Matsubara Y (May 2003). "Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness". Human Molecular Genetics. 12 (9): 995–1004. doi:10.1093/hmg/ddg116. PMID 12700168. https://doi.org/10.1093%2Fhmg%2Fddg116
Boulay AC, del Castillo FJ, Giraudet F, Hamard G, Giaume C, Petit C, Avan P, Cohen-Salmon M (January 2013). "Hearing is normal without connexin30". The Journal of Neuroscience. 33 (2): 430–4. doi:10.1523/JNEUROSCI.4240-12.2013. PMC 6704917. PMID 23303923. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704917
Sun Y, Tang W, Chang Q, Wang Y, Kong W, Lin X (October 2009). "Connexin30 null and conditional connexin26 null mice display distinct pattern and time course of cellular degeneration in the cochlea". The Journal of Comparative Neurology. 516 (6): 569–79. doi:10.1002/cne.22117. PMC 2846422. PMID 19673007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846422
Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH (2022). "Aquaporin-4, Connexin-30, and Connexin-43 as Biomarkers for Decreased Objective Sleep Quality and/or Cognition Dysfunction in Patients With Chronic Insomnia Disorder". Front Psychiatry. 13: 856867. doi:10.3389/fpsyt.2022.856867. PMC 8989729. PMID 35401278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989729
Ingiosi AM, Frank MG (May 2023). "Goodnight, astrocyte: waking up to astroglial mechanisms in sleep". FEBS J. 290 (10): 2553–2564. doi:10.1111/febs.16424. PMC 9463397. PMID 35271767. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463397
Thorpy MJ (January 2020). "Recently Approved and Upcoming Treatments for Narcolepsy". CNS Drugs. 34 (1): 9–27. doi:10.1007/s40263-019-00689-1. PMC 6982634. PMID 31953791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982634
Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH (2022). "Aquaporin-4, Connexin-30, and Connexin-43 as Biomarkers for Decreased Objective Sleep Quality and/or Cognition Dysfunction in Patients With Chronic Insomnia Disorder". Front Psychiatry. 13: 856867. doi:10.3389/fpsyt.2022.856867. PMC 8989729. PMID 35401278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989729
Ingiosi AM, Frank MG (May 2023). "Goodnight, astrocyte: waking up to astroglial mechanisms in sleep". FEBS J. 290 (10): 2553–2564. doi:10.1111/febs.16424. PMC 9463397. PMID 35271767. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463397
Thorpy MJ (January 2020). "Recently Approved and Upcoming Treatments for Narcolepsy". CNS Drugs. 34 (1): 9–27. doi:10.1007/s40263-019-00689-1. PMC 6982634. PMID 31953791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982634
Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH (2022). "Aquaporin-4, Connexin-30, and Connexin-43 as Biomarkers for Decreased Objective Sleep Quality and/or Cognition Dysfunction in Patients With Chronic Insomnia Disorder". Front Psychiatry. 13: 856867. doi:10.3389/fpsyt.2022.856867. PMC 8989729. PMID 35401278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989729
Ingiosi AM, Frank MG (May 2023). "Goodnight, astrocyte: waking up to astroglial mechanisms in sleep". FEBS J. 290 (10): 2553–2564. doi:10.1111/febs.16424. PMC 9463397. PMID 35271767. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463397
Thorpy MJ (January 2020). "Recently Approved and Upcoming Treatments for Narcolepsy". CNS Drugs. 34 (1): 9–27. doi:10.1007/s40263-019-00689-1. PMC 6982634. PMID 31953791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982634
Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH (2022). "Aquaporin-4, Connexin-30, and Connexin-43 as Biomarkers for Decreased Objective Sleep Quality and/or Cognition Dysfunction in Patients With Chronic Insomnia Disorder". Front Psychiatry. 13: 856867. doi:10.3389/fpsyt.2022.856867. PMC 8989729. PMID 35401278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989729
Ingiosi AM, Frank MG (May 2023). "Goodnight, astrocyte: waking up to astroglial mechanisms in sleep". FEBS J. 290 (10): 2553–2564. doi:10.1111/febs.16424. PMC 9463397. PMID 35271767. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463397
Thorpy MJ (January 2020). "Recently Approved and Upcoming Treatments for Narcolepsy". CNS Drugs. 34 (1): 9–27. doi:10.1007/s40263-019-00689-1. PMC 6982634. PMID 31953791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982634
Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH (2022). "Aquaporin-4, Connexin-30, and Connexin-43 as Biomarkers for Decreased Objective Sleep Quality and/or Cognition Dysfunction in Patients With Chronic Insomnia Disorder". Front Psychiatry. 13: 856867. doi:10.3389/fpsyt.2022.856867. PMC 8989729. PMID 35401278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989729
Ingiosi AM, Frank MG (May 2023). "Goodnight, astrocyte: waking up to astroglial mechanisms in sleep". FEBS J. 290 (10): 2553–2564. doi:10.1111/febs.16424. PMC 9463397. PMID 35271767. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463397
Thorpy MJ (January 2020). "Recently Approved and Upcoming Treatments for Narcolepsy". CNS Drugs. 34 (1): 9–27. doi:10.1007/s40263-019-00689-1. PMC 6982634. PMID 31953791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982634
Thorpy MJ, Bogan RK (April 2020). "Update on the pharmacologic management of narcolepsy: mechanisms of action and clinical implications". Sleep Med. 68: 97–109. doi:10.1016/j.sleep.2019.09.001. PMID 32032921. S2CID 203405397. /wiki/Doi_(identifier)
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z (2023). "Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders?". Front Cell Neurosci. 17: 1188306. doi:10.3389/fncel.2023.1188306. PMC 10330732. PMID 37435045. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330732
Ingiosi AM, Frank MG (May 2023). "Goodnight, astrocyte: waking up to astroglial mechanisms in sleep". FEBS J. 290 (10): 2553–2564. doi:10.1111/febs.16424. PMC 9463397. PMID 35271767. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463397
Thorpy MJ (January 2020). "Recently Approved and Upcoming Treatments for Narcolepsy". CNS Drugs. 34 (1): 9–27. doi:10.1007/s40263-019-00689-1. PMC 6982634. PMID 31953791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982634
Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH (2022). "Aquaporin-4, Connexin-30, and Connexin-43 as Biomarkers for Decreased Objective Sleep Quality and/or Cognition Dysfunction in Patients With Chronic Insomnia Disorder". Front Psychiatry. 13: 856867. doi:10.3389/fpsyt.2022.856867. PMC 8989729. PMID 35401278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989729
Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH (2022). "Aquaporin-4, Connexin-30, and Connexin-43 as Biomarkers for Decreased Objective Sleep Quality and/or Cognition Dysfunction in Patients With Chronic Insomnia Disorder". Front Psychiatry. 13: 856867. doi:10.3389/fpsyt.2022.856867. PMC 8989729. PMID 35401278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989729
Thorpy MJ, Bogan RK (April 2020). "Update on the pharmacologic management of narcolepsy: mechanisms of action and clinical implications". Sleep Med. 68: 97–109. doi:10.1016/j.sleep.2019.09.001. PMID 32032921. S2CID 203405397. /wiki/Doi_(identifier)