The response of global surface temperature (GST) to a step-like doubling of the atmospheric CO2 concentration, and its resultant forcing, is defined as the Equilibrium Climate Sensitivity (ECS). The ECS response extends over short and long timescales, however the main time constant associated with ECS has been identified by Jule Charney, James Hansen and others as a useful metric to help guide policymaking. RCPs, SSPs, and other similar scenarios have also been used by researchers to simulate the rate of forced climate changes. By definition, ECS presumes that ongoing emissions will offset the ocean and land carbon sinks following the step-wise perturbation in atmospheric CO2.
ECS response time is proportional to ECS and is principally regulated by the thermal inertia of the uppermost mixed layer and adjacent lower ocean layers. Main time constants fitted to the results from climate models have ranged from a few decades when ECS is low, to as long as a century when ECS is high. A portion of the variation between estimates arises from different treatments of heat transport into the deep ocean.
Earth's carbon cycle feedback includes a destabilizing positive feedback (identified as the climate-carbon feedback) which prolongs warming for centuries, and a stabilizing negative feedback (identified as the concentration-carbon feedback) which limits the ultimate warming response to fossil carbon emissions. The near-term effect following emissions is asymmetric with latter mechanism being about four times larger, and results in a significant net slowing contribution to the inertia of the climate system during the first few decades following emissions.
"Explainer: How 'Shared Socioeconomic Pathways' explore future climate change". Carbon Brief. 19 April 2018. Retrieved 14 February 2023. https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change
Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O’Neill, Brian C.; Fujimori, Shinichiro; Bauer, Nico; Calvin, Katherine; Dellink, Rob; Fricko, Oliver; Lutz, Wolfgang (1 January 2017). "The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview". Global Environmental Change. 42: 153–168. Bibcode:2017GEC....42..153R. doi:10.1016/j.gloenvcha.2016.05.009. hdl:10044/1/78069. ISSN 0959-3780. https://doi.org/10.1016%2Fj.gloenvcha.2016.05.009
Michon Scott (2006-04-24). "Earth's Big Heat Bucket". NASA Earth Observatory. https://earthobservatory.nasa.gov/features/HeatBucket/heatbucket.php
Gregory, J.M. (1 July 2000). "Vertical heat transports in the ocean and their effect on time-dependent climate change". Climate Dynamics. 16 (7): 501–515. Bibcode:2000ClDy...16..501G. doi:10.1007/s003820000059. S2CID 54695479. /wiki/Bibcode_(identifier)
Gregory, J.M.; Jones, C.D.; Cadule, P.; Friedlingstein, P. (2009). "Quantifying Carbon Cycle Feedbacks" (PDF). Journal of Climate. 22 (19): 5232–5250. Bibcode:2009JCli...22.5232G. doi:10.1175/2009JCLI2949.1. https://hal.archives-ouvertes.fr/hal-03197002/file/Gr199.pdf
Matthews, J.B.R.; Möller, V.; van Diemenn, R.; Fuglesvedt, J.R.; et al. (2021-08-09). "Annex VII: Glossary". In Masson-Delmotte, Valérie; Zhai, Panmao; Pirani, Anna; Connors, Sarah L.; Péan, Clotilde; et al. (eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (PDF). IPCC / Cambridge University Press. pp. 2215–2256. doi:10.1017/9781009157896.022. ISBN 9781009157896. 9781009157896
Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; et al. (3 December 2013). "Assessing "Dangerous Climate Change": Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature". PLOS ONE. 8 (12): e81648. Bibcode:2013PLoSO...881648H. doi:10.1371/journal.pone.0081648. PMC 3849278. PMID 24312568. /wiki/Valerie_Masson-Delmotte
Tebaldi, Claudia; Friedlingstein, Pierre (13 October 2017). "Delayed detection of climate mitigation benefits due to climate inertia and variability". Proceedings of the National Academy of Sciences. 110 (43): 17229–17234. doi:10.1073/pnas.1300005110. PMC 3808634. PMID 24101485. /wiki/Claudia_Tebaldi
Mathews, H. Damon; Solomon, Susan (26 April 2013). "Irreversible Does Not Mean Unavoidable" (PDF). Science. 340 (6131). American Association for the Advancement of Science: 438–439. Bibcode:2013Sci...340..438M. doi:10.1126/science.1236372. PMID 23539182. S2CID 44352274. https://www.science.org/cms/asset/7446d1ba-b4b9-4c2d-945b-ea04ca0547d6/pap.pdf
Hansen, James E.; Sato, Makiko; Simons, Leon; Nazarenko, Larissa S.; Sangha, Isabelle; Karecha, Pushker; Zachos, James C.; von Schuckmann, Karina; Loeb, Norman G.; Osman, Matthew B.; et al. (2 November 2023). "Global Warming in the Pipeline". Oxford Open Climate Change. 3 (1): kgad008. doi:10.1093/oxfclm/kgad008. https://doi.org/10.1093%2Foxfclm%2Fkgad008
Weyant, John (2017). "Some Contributions of Integrated Assessment Models of Global Climate Change". Review of Environmental Economics and Policy. 11 (1): 115–137. doi:10.1093/reep/rew018. ISSN 1750-6816. https://doi.org/10.1093%2Freep%2Frew018
Joussaume, Sylvie (1999). Climat d'heir á demain. Paris: CNRS Editions - CEA. ISBN 978-2271057327. 978-2271057327
National Research Council (2002). Abrupt Climate Change: Inevitable Surprises. The National Academic Press. doi:10.17226/10136. ISBN 978-0-309-13304-3. 978-0-309-13304-3
Marcott, Shaun A.; Shakun, Jeremy D.; Clark, Peter U.; Mix, Alan C. (8 March 2013). "A Reconstruction of Regional and Global Temperature for the Past 11,300 Years". Science. 339 (6124): 1198–1201. Bibcode:2013Sci...339.1198M. CiteSeerX 10.1.1.383.902. doi:10.1126/science.1228026. PMID 23471405. S2CID 29665980. https://www.science.org/doi/10.1126/science.1228026
Steffen, Will; Rockström, Johan; Richardson, Katherine; Lenton, Timothy M.; Folke, Carle; Liverman, Diana; Summerhayes, Collin P.; Barnosky, Anthony D.; Cornell, Sarah E.; Crucifix, Michel; et al. (6 August 2018). "Trajectories of the Earth System in the Anthropocene". PNAS. 116 (33): 8252–8259. Bibcode:2018PNAS..115.8252S. doi:10.1073/pnas.1810141115. PMC 6099852. PMID 30082409. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099852
Joussaume, Sylvie (1999). Climat d'heir á demain. Paris: CNRS Editions - CEA. ISBN 978-2271057327. 978-2271057327
Hansen, J.; Russell, G.; Lacis, A.; Fung, I.; Rind, D.; Stone, P. (1985). "Climate response times: Dependence on climate sensitivity and ocean mixing" (PDF). Science. 229 (4716): 857–850. Bibcode:1985Sci...229..857H. doi:10.1126/science.229.4716.857. PMID 17777925. S2CID 22938919. https://pubs.giss.nasa.gov/docs/1985/1985_Hansen_ha09600g.pdf
Gerald R. North (1988). "Lessons from energy balance models". In Michael E. Schlesinger (ed.). Physically-based Modelling and Simulation of Climate and Climatic Change (NATO Advanced Study Institute on Physical-Based Modelling ed.). Springer. ISBN 978-90-277-2789-3. 978-90-277-2789-3
Lenton, Timothy M.; Held, Hermann; Kriegler, Elmar; Hall, Jim W; Lucht, Wolfgang; Rahmstorf, Stefan; Schellnhuber, Hans Joachim (2008-02-12). "Tipping elements in the Earth's climate system". PNAS. 105 (6): 1786–1793. Bibcode:2008PNAS..105.1786L. doi:10.1073/pnas.0705414105. PMC 2538841. PMID 18258748. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538841
Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science. 377 (6611): eabn7950. doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. PMID 36074831. S2CID 252161375. https://www.science.org/doi/10.1126/science.abn7950
National Research Council (2002). Abrupt Climate Change: Inevitable Surprises. The National Academic Press. doi:10.17226/10136. ISBN 978-0-309-13304-3. 978-0-309-13304-3
Hansen, James E.; Sato, Makiko; Simons, Leon; Nazarenko, Larissa S.; Sangha, Isabelle; Karecha, Pushker; Zachos, James C.; von Schuckmann, Karina; Loeb, Norman G.; Osman, Matthew B.; et al. (2 November 2023). "Global Warming in the Pipeline". Oxford Open Climate Change. 3 (1): kgad008. doi:10.1093/oxfclm/kgad008. https://doi.org/10.1093%2Foxfclm%2Fkgad008
Charney, J.G.; Arakawa, A.; Baker D.J.; Bolin B.; Dickinson R.E.; Goody R.M.; Leith C.E.; Stommel H.M.; Wunsch C.I. (1979). Carbon Dioxide and Climate: A Scientific Assessment (Free PDF download). Washington D.C., United States: National Academies Press. doi:10.17226/12181. ISBN 978-0-309-11910-8. 978-0-309-11910-8
Hansen, James E.; Sato, Makiko; Simons, Leon; Nazarenko, Larissa S.; Sangha, Isabelle; Karecha, Pushker; Zachos, James C.; von Schuckmann, Karina; Loeb, Norman G.; Osman, Matthew B.; et al. (2 November 2023). "Global Warming in the Pipeline". Oxford Open Climate Change. 3 (1): kgad008. doi:10.1093/oxfclm/kgad008. https://doi.org/10.1093%2Foxfclm%2Fkgad008
Sherwood, S.C.; Webb, M.J.; Annan, J.D.; Armour, K.C.; Forster, P.M.; Hargreaves, J.C.; Hegerl, G.; Klein, S.A.; Marvel, K.D.; Rohling, E.J.; et al. (22 July 2020). "An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence". Reviews of Geophysics. 58 (4): e2019RG000678. Bibcode:2020RvGeo..5800678S. doi:10.1029/2019RG000678. PMC 7524012. PMID 33015673. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524012
Hansen, J.; Russell, G.; Lacis, A.; Fung, I.; Rind, D.; Stone, P. (1985). "Climate response times: Dependence on climate sensitivity and ocean mixing" (PDF). Science. 229 (4716): 857–850. Bibcode:1985Sci...229..857H. doi:10.1126/science.229.4716.857. PMID 17777925. S2CID 22938919. https://pubs.giss.nasa.gov/docs/1985/1985_Hansen_ha09600g.pdf
Gregory, J.M. (1 July 2000). "Vertical heat transports in the ocean and their effect on time-dependent climate change". Climate Dynamics. 16 (7): 501–515. Bibcode:2000ClDy...16..501G. doi:10.1007/s003820000059. S2CID 54695479. /wiki/Bibcode_(identifier)
Hansen, James E.; Sato, Makiko; Simons, Leon; Nazarenko, Larissa S.; Sangha, Isabelle; Karecha, Pushker; Zachos, James C.; von Schuckmann, Karina; Loeb, Norman G.; Osman, Matthew B.; et al. (2 November 2023). "Global Warming in the Pipeline". Oxford Open Climate Change. 3 (1): kgad008. doi:10.1093/oxfclm/kgad008. https://doi.org/10.1093%2Foxfclm%2Fkgad008
Michon Scott (2006-04-24). "Earth's Big Heat Bucket". NASA Earth Observatory. https://earthobservatory.nasa.gov/features/HeatBucket/heatbucket.php
Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; et al. (3 December 2013). "Assessing "Dangerous Climate Change": Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature". PLOS ONE. 8 (12): e81648. Bibcode:2013PLoSO...881648H. doi:10.1371/journal.pone.0081648. PMC 3849278. PMID 24312568. /wiki/Valerie_Masson-Delmotte
Cheng, Lijing; Foster, Grant; Hausfather, Zeke; Trenberth, Kevin E.; Abraham, John (2022). "Improved Quantification of the Rate of Ocean Warming". Journal of Climate. 35 (14): 4827–4840. Bibcode:2022JCli...35.4827C. doi:10.1175/JCLI-D-21-0895.1. https://doi.org/10.1175%2FJCLI-D-21-0895.1
Royce, B. S. H.; Lam, S. H. (25 July 2013). "The Earth's Equilibrium Climate Sensitivity and Thermal Inertia". arXiv:1307.6821 [physics.ao-ph]. /wiki/ArXiv_(identifier)
"Climate Change 2001: Synthesis Report". IPCC. 2001. Retrieved 11 May 2015. http://www.ipcc.ch/ipccreports/tar/vol4/011.htm
M. W., Smith (1988). "The significance of climatic change for the permafrost environment". p. 19. CiteSeerX 10.1.1.383.5875. /wiki/CiteSeerX_(identifier)
Gregory, J.M.; Jones, C.D.; Cadule, P.; Friedlingstein, P. (2009). "Quantifying Carbon Cycle Feedbacks" (PDF). Journal of Climate. 22 (19): 5232–5250. Bibcode:2009JCli...22.5232G. doi:10.1175/2009JCLI2949.1. https://hal.archives-ouvertes.fr/hal-03197002/file/Gr199.pdf
Archer, David (2009). "Atmospheric lifetime of fossil fuel carbon dioxide". Annual Review of Earth and Planetary Sciences. 37 (1): 117–34. Bibcode:2009AREPS..37..117A. doi:10.1146/annurev.earth.031208.100206. hdl:2268/12933. https://orbi.uliege.be/handle/2268/12933
Mathews, H. Damon; Solomon, Susan (26 April 2013). "Irreversible Does Not Mean Unavoidable" (PDF). Science. 340 (6131). American Association for the Advancement of Science: 438–439. Bibcode:2013Sci...340..438M. doi:10.1126/science.1236372. PMID 23539182. S2CID 44352274. https://www.science.org/cms/asset/7446d1ba-b4b9-4c2d-945b-ea04ca0547d6/pap.pdf
"Climate Change 2001: Synthesis Report". IPCC. 2001. Retrieved 11 May 2015. http://www.ipcc.ch/ipccreports/tar/vol4/011.htm
"Climate Change 2001: Synthesis Report". IPCC. 2001. Retrieved 11 May 2015. http://www.ipcc.ch/ipccreports/tar/vol4/011.htm
Tebaldi, Claudia; Friedlingstein, Pierre (13 October 2017). "Delayed detection of climate mitigation benefits due to climate inertia and variability". Proceedings of the National Academy of Sciences. 110 (43): 17229–17234. doi:10.1073/pnas.1300005110. PMC 3808634. PMID 24101485. /wiki/Claudia_Tebaldi
Samset, B.H.; Fuglestvedt, J.S.; Lund, M.T. (7 July 2020). "Delayed emergence of a global temperature response after emission mitigation". Nature Communications. 11 (3261): 3261. Bibcode:2020NatCo..11.3261S. doi:10.1038/s41467-020-17001-1. PMC 7341748. PMID 32636367. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341748