hTERT immortalizes various normal cells in culture, thereby endowing the self-renewal properties of stem cells to non-stem cell cultures. There are multiple ways in which immortalization of non-stem cells can be achieved, one of which being via the introduction of hTERT into the cells. Differentiated cells often express hTERC and TP1, a telomerase-associated protein that helps form the telomerase assembly, but does not express hTERT. Hence, hTERT acts as the limiting factor for telomerase activity in differentiated cells. However, with hTERT over-expression, active telomerase can be formed in differentiated cells. This method has been used to immortalize prostate epithelial and stromal-derived cells, which are typically difficult to culture in vitro. hTERT introduction allows in vitro culture of these cells and available for possible future research. The introduction of hTERT has an advantage over the use of viral protein for immortalization in that it does not involve the inactivation of tumor suppressor gene, which might lead to cancer formation.
Over-expression of hTERT in stem cells changes the properties of the cells. hTERT over-expression increases the stem cell properties of human mesenchymal stem cells. The expression profile of mesenchymal stem cells converges towards embryonic stem cells, suggesting that these cells may have embryonic stem cell-like properties. However, it has been observed that mesenchymal stem cells undergo decreased levels of spontaneous differentiation. This suggests that the differentiation capacity of adult stem cells may be dependent on telomerase activities. Therefore, over-expression of hTERT, which is akin to increasing telomerase activities, may create adult stem cells with a larger capacity for differentiation and hence, a larger capacity for treatment.
Increasing the telomerase activities in stem cells gives different effects depending on the intrinsic nature of the different types of stem cells. Hence, not all stem cells will have increased stem-cell properties. For example, research has shown that telomerase can be upregulated in CD34+ Umbilical Cord Blood Cells through hTERT over-expression. The survival of these stem cells was enhanced, although there was no increase in the amount of population doubling.
Genome-wide association studies suggest TERT is a susceptibility gene for development of many cancers, including lung cancer.
Early development of iPS cell lines were not efficient, as they yielded up to 5% of somatic cells successfully reprogrammed into a stem cell-like state. By using immortalized somatic cells (differentiated cells with hTERT upregulated), iPS cell reprogramming was increased by twentyfold compared to reprogramming using mortal cells.
Telomere length in healthy adult cells elongates and acquires epigenetic characteristics similar to those of ES cells when reprogrammed as iPS cells. Some epigenetic characteristics of ES cells include a low density of tri-methylated histones H3K9 and H4K20 at telomeres, as well as an increased detectable amount of TERT transcripts and protein activity. Without the restoration of TERT and associated telomerase proteins, the efficiency of iPS cells would be drastically reduced. iPS cells would also lose the ability to self-renew and would eventually senesce.
The functionality and efficiency of a reprogrammed iPS cell is determined by the ability of the cell to re-activate the telomerase complex and elongate its telomeres allowing for self-renewal. hTERT is a major limiting component of the telomerase complex and a deficiency of intact hTERT impedes the activity of telomerase, making iPS cells an unsuitable pathway towards therapy for telomere-deficient disorders.
As organisms age and cells proliferate, telomeres shorten with each round of replication. Cells restricted to a specific lineage are capable of division only a set number of times, set by the length of telomeres, before they senesce. Depletion and uncapping of telomeres has been linked to organ degeneration, failure, and fibrosis due to progenitors' becoming quiescent and unable to differentiate. Using an in vivo TERT deficient mouse model, reactivation of the TERT gene in quiescent populations in multiple organs reactivated telomerase and restored the cells’ abilities to differentiate. Reactivation of TERT down-regulates DNA damage signals associated with cellular mitotic checkpoints allowing for proliferation and elimination of a degenerative phenotype. In another study, introducing the TERT gene into healthy one-year-old mice using an engineered adeno-associated virus led to a 24% increase in lifespan, without any increase in cancer.
Paradoxically, genetic variants in the TERT locus, which are associated with longer leukocyte telomere length,
are associated with faster epigenetic aging rates in blood according to a molecular biomarker of aging known as epigenetic clock. Similarly, human TERT expression did not arrest epigenetic aging in human fibroblasts.
Another method that has been studied is manipulating the hTERT promoter to induce apoptosis in tumor cells. Plasmid DNA sequences can be manufactured using the hTERT promoter followed by genes encoding for specific proteins. The protein can be a toxin, an apoptotic factor, or a viral protein. Toxins such as diphtheria toxin interfere with cellular processes and eventually induce apoptosis. Apoptotic death factors like FADD (Fas-Associated protein with Death Domain) can be used to force cells expressing hTERT to undergo apoptosis. Viral proteins like viral thymidine kinase can be used for specific targeting of a drug. By introducing a prodrug only activated by the viral enzyme, specific targeting of cells expressing hTERT can be achieved. By using the hTERT promoter, only cells expressing hTERT will be affected and this allows for specific targeting of tumor cells.
Aside from cancer therapies, the hTERT gene has been used to promote the growth of hair follicles. A schematic animation for gene therapy is shown as follows.
Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, et al. (December 1997). "Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT". Nature Genetics. 17 (4): 498–502. doi:10.1038/ng1297-498. PMID 9398860. S2CID 2558116. /wiki/Doi_(identifier)
Kirkpatrick KL, Mokbel K (December 2001). "The significance of human telomerase reverse transcriptase (hTERT) in cancer". European Journal of Surgical Oncology. 27 (8): 754–60. doi:10.1053/ejso.2001.1151. PMID 11735173. /wiki/Doi_(identifier)
Shampay J, Blackburn EH (January 1988). "Generation of telomere-length heterogeneity in Saccharomyces cerevisiae". Proceedings of the National Academy of Sciences of the United States of America. 85 (2): 534–8. Bibcode:1988PNAS...85..534S. doi:10.1073/pnas.85.2.534. PMC 279585. PMID 3277178. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC279585
Poole JC, Andrews LG, Tollefsbol TO (May 2001). "Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT)". Gene. 269 (1–2): 1–12. doi:10.1016/S0378-1119(01)00440-1. PMID 11376932. /wiki/Doi_(identifier)
Zhang A, Zheng C, Hou M, Lindvall C, Li KJ, Erlandsson F, et al. (April 2003). "Deletion of the telomerase reverse transcriptase gene and haploinsufficiency of telomere maintenance in Cri du chat syndrome". American Journal of Human Genetics. 72 (4): 940–8. doi:10.1086/374565. PMC 1180356. PMID 12629597. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180356
Cerruti Mainardi P (September 2006). "Cri du Chat syndrome". Orphanet Journal of Rare Diseases. 1: 33. doi:10.1186/1750-1172-1-33. PMC 1574300. PMID 16953888. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574300
"Entrez Gene: TERT telomerase reverse transcriptase". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7015
Cong YS, Wen J, Bacchetti S (January 1999). "The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter". Human Molecular Genetics. 8 (1): 137–42. doi:10.1093/hmg/8.1.137. PMID 9887342. https://doi.org/10.1093%2Fhmg%2F8.1.137
Bryce LA, Morrison N, Hoare SF, Muir S, Keith WN (2000). "Mapping of the gene for the human telomerase reverse transcriptase, hTERT, to chromosome 5p15.33 by fluorescence in situ hybridization". Neoplasia. 2 (3): 197–201. doi:10.1038/sj.neo.7900092. PMC 1507564. PMID 10935505. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1507564
Cukusić A, Skrobot Vidacek N, Sopta M, Rubelj I (2008). "Telomerase regulation at the crossroads of cell fate". Cytogenetic and Genome Research. 122 (3–4): 263–72. doi:10.1159/000167812. PMID 19188695. S2CID 46652078. /wiki/Doi_(identifier)
Cong YS, Wen J, Bacchetti S (January 1999). "The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter". Human Molecular Genetics. 8 (1): 137–42. doi:10.1093/hmg/8.1.137. PMID 9887342. https://doi.org/10.1093%2Fhmg%2F8.1.137
Cukusić A, Skrobot Vidacek N, Sopta M, Rubelj I (2008). "Telomerase regulation at the crossroads of cell fate". Cytogenetic and Genome Research. 122 (3–4): 263–72. doi:10.1159/000167812. PMID 19188695. S2CID 46652078. /wiki/Doi_(identifier)
Kyo S, Takakura M, Fujiwara T, Inoue M (August 2008). "Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers". Cancer Science. 99 (8): 1528–38. doi:10.1111/j.1349-7006.2008.00878.x. hdl:2297/45975. PMID 18754863. S2CID 20774974. https://kanazawa-u.repo.nii.ac.jp/?action=repository_action_common_download&item_id=14360&item_no=1&attribute_id=26&file_no=1
Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, et al. (February 2009). "Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells". Cell Stem Cell. 4 (2): 141–54. doi:10.1016/j.stem.2008.12.010. PMID 19200803. https://doi.org/10.1016%2Fj.stem.2008.12.010
Kyo S, Takakura M, Fujiwara T, Inoue M (August 2008). "Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers". Cancer Science. 99 (8): 1528–38. doi:10.1111/j.1349-7006.2008.00878.x. hdl:2297/45975. PMID 18754863. S2CID 20774974. https://kanazawa-u.repo.nii.ac.jp/?action=repository_action_common_download&item_id=14360&item_no=1&attribute_id=26&file_no=1
Zhang A, Zheng C, Hou M, Lindvall C, Li KJ, Erlandsson F, et al. (April 2003). "Deletion of the telomerase reverse transcriptase gene and haploinsufficiency of telomere maintenance in Cri du chat syndrome". American Journal of Human Genetics. 72 (4): 940–8. doi:10.1086/374565. PMC 1180356. PMID 12629597. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180356
Walne AJ, Dokal I (April 2009). "Advances in the understanding of dyskeratosis congenita". British Journal of Haematology. 145 (2): 164–72. doi:10.1111/j.1365-2141.2009.07598.x. PMC 2882229. PMID 19208095. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882229
Flores I, Benetti R, Blasco MA (June 2006). "Telomerase regulation and stem cell behaviour". Current Opinion in Cell Biology. 18 (3): 254–60. doi:10.1016/j.ceb.2006.03.003. PMID 16617011. /wiki/Doi_(identifier)
Calado R, Young N (2012). "Telomeres in disease". F1000 Medicine Reports. 4: 8. doi:10.3410/M4-8. PMC 3318193. PMID 22500192. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318193
Flores I, Benetti R, Blasco MA (June 2006). "Telomerase regulation and stem cell behaviour". Current Opinion in Cell Biology. 18 (3): 254–60. doi:10.1016/j.ceb.2006.03.003. PMID 16617011. /wiki/Doi_(identifier)
Flores I, Blasco MA (September 2010). "The role of telomeres and telomerase in stem cell aging". FEBS Letters. 584 (17): 3826–30. doi:10.1016/j.febslet.2010.07.042. PMID 20674573. S2CID 22993253. https://doi.org/10.1016%2Fj.febslet.2010.07.042
Cukusić A, Skrobot Vidacek N, Sopta M, Rubelj I (2008). "Telomerase regulation at the crossroads of cell fate". Cytogenetic and Genome Research. 122 (3–4): 263–72. doi:10.1159/000167812. PMID 19188695. S2CID 46652078. /wiki/Doi_(identifier)
Tsai CC, Chen CL, Liu HC, Lee YT, Wang HW, Hou LT, Hung SC (July 2010). "Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines". Journal of Biomedical Science. 17 (1): 64. doi:10.1186/1423-0127-17-64. PMC 2923118. PMID 20670406. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923118
Cukusić A, Skrobot Vidacek N, Sopta M, Rubelj I (2008). "Telomerase regulation at the crossroads of cell fate". Cytogenetic and Genome Research. 122 (3–4): 263–72. doi:10.1159/000167812. PMID 19188695. S2CID 46652078. /wiki/Doi_(identifier)
Kogan I, Goldfinger N, Milyavsky M, Cohen M, Shats I, Dobler G, et al. (April 2006). "hTERT-immortalized prostate epithelial and stromal-derived cells: an authentic in vitro model for differentiation and carcinogenesis". Cancer Research. 66 (7): 3531–40. doi:10.1158/0008-5472.CAN-05-2183. PMID 16585177. https://doi.org/10.1158%2F0008-5472.CAN-05-2183
Cukusić A, Skrobot Vidacek N, Sopta M, Rubelj I (2008). "Telomerase regulation at the crossroads of cell fate". Cytogenetic and Genome Research. 122 (3–4): 263–72. doi:10.1159/000167812. PMID 19188695. S2CID 46652078. /wiki/Doi_(identifier)
Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Nakamura H, et al. (January 1998). "Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas". Nature Genetics. 18 (1): 65–8. doi:10.1038/ng0198-65. PMID 9425903. S2CID 8856414. /wiki/Doi_(identifier)
Kogan I, Goldfinger N, Milyavsky M, Cohen M, Shats I, Dobler G, et al. (April 2006). "hTERT-immortalized prostate epithelial and stromal-derived cells: an authentic in vitro model for differentiation and carcinogenesis". Cancer Research. 66 (7): 3531–40. doi:10.1158/0008-5472.CAN-05-2183. PMID 16585177. https://doi.org/10.1158%2F0008-5472.CAN-05-2183
Tsai CC, Chen CL, Liu HC, Lee YT, Wang HW, Hou LT, Hung SC (July 2010). "Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines". Journal of Biomedical Science. 17 (1): 64. doi:10.1186/1423-0127-17-64. PMC 2923118. PMID 20670406. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923118
Elwood NJ, Jiang XR, Chiu CP, Lebkowski JS, Smith CA (March 2004). "Enhanced long-term survival, but no increase in replicative capacity, following retroviral transduction of human cord blood CD34+ cells with human telomerase reverse transcriptase". Haematologica. 89 (3): 377–8. PMID 15020288. /wiki/PMID_(identifier)
Tsai CC, Chen CL, Liu HC, Lee YT, Wang HW, Hou LT, Hung SC (July 2010). "Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines". Journal of Biomedical Science. 17 (1): 64. doi:10.1186/1423-0127-17-64. PMC 2923118. PMID 20670406. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923118
Flores I, Benetti R, Blasco MA (June 2006). "Telomerase regulation and stem cell behaviour". Current Opinion in Cell Biology. 18 (3): 254–60. doi:10.1016/j.ceb.2006.03.003. PMID 16617011. /wiki/Doi_(identifier)
Elwood NJ, Jiang XR, Chiu CP, Lebkowski JS, Smith CA (March 2004). "Enhanced long-term survival, but no increase in replicative capacity, following retroviral transduction of human cord blood CD34+ cells with human telomerase reverse transcriptase". Haematologica. 89 (3): 377–8. PMID 15020288. /wiki/PMID_(identifier)
"Entrez Gene: TERT telomerase reverse transcriptase". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7015
Baird DM (May 2010). "Variation at the TERT locus and predisposition for cancer". Expert Reviews in Molecular Medicine. 12: e16. doi:10.1017/S146239941000147X. PMID 20478107. S2CID 13727556. /wiki/Doi_(identifier)
McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, et al. (December 2008). "Lung cancer susceptibility locus at 5p15.33". Nature Genetics. 40 (12): 1404–6. doi:10.1038/ng.254. PMC 2748187. PMID 18978790. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748187
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (September 1999). "Telomere shortening and apoptosis in telomerase-inhibited human tumor cells". Genes & Development. 13 (18): 2388–99. doi:10.1101/gad.13.18.2388. PMC 317024. PMID 10500096. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317024
Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (September 1999). "Telomere shortening and apoptosis in telomerase-inhibited human tumor cells". Genes & Development. 13 (18): 2388–99. doi:10.1101/gad.13.18.2388. PMC 317024. PMID 10500096. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317024
Mocellin S, Verdi D, Pooley KA, Landi MT, Egan KM, Baird DM, et al. (June 2012). "Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis". Journal of the National Cancer Institute. 104 (11): 840–54. doi:10.1093/jnci/djs222. PMC 3611810. PMID 22523397. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611810
Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (September 1999). "Telomere shortening and apoptosis in telomerase-inhibited human tumor cells". Genes & Development. 13 (18): 2388–99. doi:10.1101/gad.13.18.2388. PMC 317024. PMID 10500096. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317024
Glukhov AI, Svinareva LV, Severin SE, Shvets VI (2011). "Telomerase inhibitors as novel antitumour drugs". Applied Biochemistry and Microbiology. 47 (7): 655–660. doi:10.1134/S0003683811070039. S2CID 36207629. /wiki/Doi_(identifier)
Mocellin S, Verdi D, Pooley KA, Landi MT, Egan KM, Baird DM, et al. (June 2012). "Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis". Journal of the National Cancer Institute. 104 (11): 840–54. doi:10.1093/jnci/djs222. PMC 3611810. PMID 22523397. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611810
Mocellin S, Verdi D, Pooley KA, Landi MT, Egan KM, Baird DM, et al. (June 2012). "Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis". Journal of the National Cancer Institute. 104 (11): 840–54. doi:10.1093/jnci/djs222. PMC 3611810. PMID 22523397. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611810
Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (February 2013). "Highly recurrent TERT promoter mutations in human melanoma". Science. 339 (6122): 957–9. Bibcode:2013Sci...339..957H. doi:10.1126/science.1229259. PMC 4423787. PMID 23348506. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423787
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (September 1999). "Telomere shortening and apoptosis in telomerase-inhibited human tumor cells". Genes & Development. 13 (18): 2388–99. doi:10.1101/gad.13.18.2388. PMC 317024. PMID 10500096. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317024
Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (September 1999). "Telomere shortening and apoptosis in telomerase-inhibited human tumor cells". Genes & Development. 13 (18): 2388–99. doi:10.1101/gad.13.18.2388. PMC 317024. PMID 10500096. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317024
Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (September 1999). "Telomere shortening and apoptosis in telomerase-inhibited human tumor cells". Genes & Development. 13 (18): 2388–99. doi:10.1101/gad.13.18.2388. PMC 317024. PMID 10500096. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317024
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Sundin T, Hentosh P (March 2012). "InTERTesting association between telomerase, mTOR and phytochemicals". Expert Reviews in Molecular Medicine. 14: e8. doi:10.1017/erm.2012.1. PMID 22455872. S2CID 8076416. /wiki/Doi_(identifier)
Glukhov AI, Svinareva LV, Severin SE, Shvets VI (2011). "Telomerase inhibitors as novel antitumour drugs". Applied Biochemistry and Microbiology. 47 (7): 655–660. doi:10.1134/S0003683811070039. S2CID 36207629. /wiki/Doi_(identifier)
Glukhov AI, Svinareva LV, Severin SE, Shvets VI (2011). "Telomerase inhibitors as novel antitumour drugs". Applied Biochemistry and Microbiology. 47 (7): 655–660. doi:10.1134/S0003683811070039. S2CID 36207629. /wiki/Doi_(identifier)
Minev B, Hipp J, Firat H, Schmidt JD, Langlade-Demoyen P, Zanetti M (April 2000). "Cytotoxic T cell immunity against telomerase reverse transcriptase in humans". Proceedings of the National Academy of Sciences of the United States of America. 97 (9): 4796–801. Bibcode:2000PNAS...97.4796M. doi:10.1073/pnas.070560797. PMC 18312. PMID 10759561. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC18312
Frolkis M, Fischer MB, Wang Z, Lebkowski JS, Chiu CP, Majumdar AS (March 2003). "Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors". Cancer Gene Therapy. 10 (3): 239–49. doi:10.1038/sj.cgt.7700563. PMID 12637945. https://doi.org/10.1038%2Fsj.cgt.7700563
Vonderheide RH, Hahn WC, Schultze JL, Nadler LM (June 1999). "The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes". Immunity. 10 (6): 673–9. doi:10.1016/S1074-7613(00)80066-7. PMID 10403642. https://doi.org/10.1016%2FS1074-7613%2800%2980066-7
Rosenberg SA (March 1999). "A new era for cancer immunotherapy based on the genes that encode cancer antigens". Immunity. 10 (3): 281–7. doi:10.1016/S1074-7613(00)80028-X. PMID 10204484. https://doi.org/10.1016%2FS1074-7613%2800%2980028-X
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (November 2007). "Induction of pluripotent stem cells from adult human fibroblasts by defined factors". Cell. 131 (5): 861–72. doi:10.1016/j.cell.2007.11.019. hdl:2433/49782. PMID 18035408. S2CID 8531539. /wiki/Doi_(identifier)
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (November 2007). "Induction of pluripotent stem cells from adult human fibroblasts by defined factors". Cell. 131 (5): 861–72. doi:10.1016/j.cell.2007.11.019. hdl:2433/49782. PMID 18035408. S2CID 8531539. /wiki/Doi_(identifier)
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, et al. (August 2009). "Immortalization eliminates a roadblock during cellular reprogramming into iPS cells". Nature. 460 (7259): 1145–8. Bibcode:2009Natur.460.1145U. doi:10.1038/nature08285. PMC 3987892. PMID 19668190. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987892
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, et al. (August 2009). "Immortalization eliminates a roadblock during cellular reprogramming into iPS cells". Nature. 460 (7259): 1145–8. Bibcode:2009Natur.460.1145U. doi:10.1038/nature08285. PMC 3987892. PMID 19668190. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987892
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (November 2007). "Induction of pluripotent stem cells from adult human fibroblasts by defined factors". Cell. 131 (5): 861–72. doi:10.1016/j.cell.2007.11.019. hdl:2433/49782. PMID 18035408. S2CID 8531539. /wiki/Doi_(identifier)
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, et al. (August 2009). "Immortalization eliminates a roadblock during cellular reprogramming into iPS cells". Nature. 460 (7259): 1145–8. Bibcode:2009Natur.460.1145U. doi:10.1038/nature08285. PMC 3987892. PMID 19668190. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987892
Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, et al. (February 2009). "Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells". Cell Stem Cell. 4 (2): 141–54. doi:10.1016/j.stem.2008.12.010. PMID 19200803. https://doi.org/10.1016%2Fj.stem.2008.12.010
Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, et al. (February 2009). "Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells". Cell Stem Cell. 4 (2): 141–54. doi:10.1016/j.stem.2008.12.010. PMID 19200803. https://doi.org/10.1016%2Fj.stem.2008.12.010
Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, et al. (February 2009). "Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells". Cell Stem Cell. 4 (2): 141–54. doi:10.1016/j.stem.2008.12.010. PMID 19200803. https://doi.org/10.1016%2Fj.stem.2008.12.010
Walne AJ, Dokal I (April 2009). "Advances in the understanding of dyskeratosis congenita". British Journal of Haematology. 145 (2): 164–72. doi:10.1111/j.1365-2141.2009.07598.x. PMC 2882229. PMID 19208095. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882229
Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, et al. (May 2011). "Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells". Nature. 474 (7351): 399–402. doi:10.1038/nature10084. PMC 3155806. PMID 21602826. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155806
Agarwal S, Loh YH, McLoughlin EM, Huang J, Park IH, Miller JD, et al. (March 2010). "Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients". Nature. 464 (7286): 292–6. Bibcode:2010Natur.464..292A. doi:10.1038/nature08792. PMC 3058620. PMID 20164838. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058620
Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, et al. (May 2011). "Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells". Nature. 474 (7351): 399–402. doi:10.1038/nature10084. PMC 3155806. PMID 21602826. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155806
Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, et al. (May 2011). "Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells". Nature. 474 (7351): 399–402. doi:10.1038/nature10084. PMC 3155806. PMID 21602826. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155806
Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA, Young NS (September 2009). "Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells". Blood. 114 (11): 2236–43. doi:10.1182/blood-2008-09-178871. PMC 2745844. PMID 19561322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745844
Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA, Young NS (September 2009). "Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells". Blood. 114 (11): 2236–43. doi:10.1182/blood-2008-09-178871. PMC 2745844. PMID 19561322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745844
Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA, Young NS (September 2009). "Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells". Blood. 114 (11): 2236–43. doi:10.1182/blood-2008-09-178871. PMC 2745844. PMID 19561322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745844
Sahin E, Depinho RA (March 2010). "Linking functional decline of telomeres, mitochondria and stem cells during ageing". Nature. 464 (7288): 520–8. Bibcode:2010Natur.464..520S. doi:10.1038/nature08982. PMC 3733214. PMID 20336134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733214
Flores I, Blasco MA (September 2010). "The role of telomeres and telomerase in stem cell aging". FEBS Letters. 584 (17): 3826–30. doi:10.1016/j.febslet.2010.07.042. PMID 20674573. S2CID 22993253. https://doi.org/10.1016%2Fj.febslet.2010.07.042
Sahin E, Depinho RA (March 2010). "Linking functional decline of telomeres, mitochondria and stem cells during ageing". Nature. 464 (7288): 520–8. Bibcode:2010Natur.464..520S. doi:10.1038/nature08982. PMC 3733214. PMID 20336134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733214
Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, et al. (January 2011). "Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice". Nature. 469 (7328): 102–6. Bibcode:2011Natur.469..102J. doi:10.1038/nature09603. PMC 3057569. PMID 21113150. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057569
Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, et al. (January 2011). "Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice". Nature. 469 (7328): 102–6. Bibcode:2011Natur.469..102J. doi:10.1038/nature09603. PMC 3057569. PMID 21113150. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057569
Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA (August 2012). "Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer". EMBO Molecular Medicine. 4 (8): 691–704. doi:10.1002/emmm.201200245. PMC 3494070. PMID 22585399. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494070
Lu AT, Xue L, Salfati EL, Chen BH, Ferrucci L, Levy D, et al. (January 2018). "GWAS of epigenetic aging rates in blood reveals a critical role for TERT". Nature Communications. 9 (1): 387. Bibcode:2018NatCo...9..387L. doi:10.1038/s41467-017-02697-5. PMC 5786029. PMID 29374233. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786029
Lu AT, Xue L, Salfati EL, Chen BH, Ferrucci L, Levy D, et al. (January 2018). "GWAS of epigenetic aging rates in blood reveals a critical role for TERT". Nature Communications. 9 (1): 387. Bibcode:2018NatCo...9..387L. doi:10.1038/s41467-017-02697-5. PMC 5786029. PMID 29374233. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786029
Abdul-Ghani R, Ohana P, Matouk I, Ayesh S, Ayesh B, Laster M, et al. (December 2000). "Use of transcriptional regulatory sequences of telomerase (hTER and hTERT) for selective killing of cancer cells". Molecular Therapy. 2 (6): 539–44. doi:10.1006/mthe.2000.0196. PMID 11124054. https://doi.org/10.1006%2Fmthe.2000.0196
Zhang PH, Tu ZG, Yang MQ, Huang WF, Zou L, Zhou YL (June 2004). "[Experimental research of targeting hTERT gene inhibited in hepatocellular carcinoma therapy by RNA interference]". AI Zheng = Aizheng = Chinese Journal of Cancer (in Chinese). 23 (6): 619–25. PMID 15191658. /wiki/PMID_(identifier)
Zhang PH, Tu ZG, Yang MQ, Huang WF, Zou L, Zhou YL (June 2004). "[Experimental research of targeting hTERT gene inhibited in hepatocellular carcinoma therapy by RNA interference]". AI Zheng = Aizheng = Chinese Journal of Cancer (in Chinese). 23 (6): 619–25. PMID 15191658. /wiki/PMID_(identifier)
You Y, Geng X, Zhao P, Fu Z, Wang C, Chao S, et al. (March 2007). "Evaluation of combination gene therapy with PTEN and antisense hTERT for malignant glioma in vitro and xenografts". Cellular and Molecular Life Sciences. 64 (5): 621–31. doi:10.1007/s00018-007-6424-4. PMC 11138417. PMID 17310280. S2CID 23250809. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138417
Abdul-Ghani R, Ohana P, Matouk I, Ayesh S, Ayesh B, Laster M, et al. (December 2000). "Use of transcriptional regulatory sequences of telomerase (hTER and hTERT) for selective killing of cancer cells". Molecular Therapy. 2 (6): 539–44. doi:10.1006/mthe.2000.0196. PMID 11124054. https://doi.org/10.1006%2Fmthe.2000.0196
Koga S, Hirohata S, Kondo Y, Komata T, Takakura M, Inoue M, et al. (2001). "FADD gene therapy using the human telomerase catalytic subunit (hTERT) gene promoter to restrict induction of apoptosis to tumors in vitro and in vivo". Anticancer Research. 21 (3B): 1937–43. PMID 11497281. /wiki/PMID_(identifier)
Song JS, Kim HP, Yoon WS, Lee KW, Kim MH, Kim KT, et al. (November 2003). "Adenovirus-mediated suicide gene therapy using the human telomerase catalytic subunit (hTERT) gene promoter induced apoptosis of ovarian cancer cell line". Bioscience, Biotechnology, and Biochemistry. 67 (11): 2344–50. doi:10.1271/bbb.67.2344. PMID 14646192. https://doi.org/10.1271%2Fbbb.67.2344
Song JS, Kim HP, Yoon WS, Lee KW, Kim MH, Kim KT, et al. (November 2003). "Adenovirus-mediated suicide gene therapy using the human telomerase catalytic subunit (hTERT) gene promoter induced apoptosis of ovarian cancer cell line". Bioscience, Biotechnology, and Biochemistry. 67 (11): 2344–50. doi:10.1271/bbb.67.2344. PMID 14646192. https://doi.org/10.1271%2Fbbb.67.2344
Abdul-Ghani R, Ohana P, Matouk I, Ayesh S, Ayesh B, Laster M, et al. (December 2000). "Use of transcriptional regulatory sequences of telomerase (hTER and hTERT) for selective killing of cancer cells". Molecular Therapy. 2 (6): 539–44. doi:10.1006/mthe.2000.0196. PMID 11124054. https://doi.org/10.1006%2Fmthe.2000.0196
Koga S, Hirohata S, Kondo Y, Komata T, Takakura M, Inoue M, et al. (2001). "FADD gene therapy using the human telomerase catalytic subunit (hTERT) gene promoter to restrict induction of apoptosis to tumors in vitro and in vivo". Anticancer Research. 21 (3B): 1937–43. PMID 11497281. /wiki/PMID_(identifier)
Song JS, Kim HP, Yoon WS, Lee KW, Kim MH, Kim KT, et al. (November 2003). "Adenovirus-mediated suicide gene therapy using the human telomerase catalytic subunit (hTERT) gene promoter induced apoptosis of ovarian cancer cell line". Bioscience, Biotechnology, and Biochemistry. 67 (11): 2344–50. doi:10.1271/bbb.67.2344. PMID 14646192. https://doi.org/10.1271%2Fbbb.67.2344
Jan HM, Wei MF, Peng CL, Lin SJ, Lai PS, Shieh MJ (January 2012). "The use of polyethylenimine-DNA to topically deliver hTERT to promote hair growth". Gene Therapy. 19 (1): 86–93. doi:10.1038/gt.2011.62. PMID 21593794. https://doi.org/10.1038%2Fgt.2011.62
Haendeler J, Hoffmann J, Rahman S, Zeiher AM, Dimmeler S (February 2003). "Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation". FEBS Letters. 536 (1–3): 180–6. doi:10.1016/S0014-5793(03)00058-9. PMID 12586360. S2CID 26111467. https://doi.org/10.1016%2FS0014-5793%2803%2900058-9
Kawauchi K, Ihjima K, Yamada O (May 2005). "IL-2 increases human telomerase reverse transcriptase activity transcriptionally and posttranslationally through phosphatidylinositol 3'-kinase/Akt, heat shock protein 90, and mammalian target of rapamycin in transformed NK cells". Journal of Immunology. 174 (9): 5261–9. doi:10.4049/jimmunol.174.9.5261. PMID 15843522. https://doi.org/10.4049%2Fjimmunol.174.9.5261
Chai W, Ford LP, Lenertz L, Wright WE, Shay JW (December 2002). "Human Ku70/80 associates physically with telomerase through interaction with hTERT". The Journal of Biological Chemistry. 277 (49): 47242–7. doi:10.1074/jbc.M208542200. PMID 12377759. https://doi.org/10.1074%2Fjbc.M208542200
Chai W, Ford LP, Lenertz L, Wright WE, Shay JW (December 2002). "Human Ku70/80 associates physically with telomerase through interaction with hTERT". The Journal of Biological Chemistry. 277 (49): 47242–7. doi:10.1074/jbc.M208542200. PMID 12377759. https://doi.org/10.1074%2Fjbc.M208542200
Song H, Li Y, Chen G, Xing Z, Zhao J, Yokoyama KK, et al. (April 2004). "Human MCRS2, a cell-cycle-dependent protein, associates with LPTS/PinX1 and reduces the telomere length". Biochemical and Biophysical Research Communications. 316 (4): 1116–23. doi:10.1016/j.bbrc.2004.02.166. PMID 15044100. /wiki/Doi_(identifier)
Khurts S, Masutomi K, Delgermaa L, Arai K, Oishi N, Mizuno H, et al. (December 2004). "Nucleolin interacts with telomerase". The Journal of Biological Chemistry. 279 (49): 51508–15. doi:10.1074/jbc.M407643200. hdl:2297/15897. PMID 15371412. https://doi.org/10.1074%2Fjbc.M407643200
Zhou XZ, Lu KP (November 2001). "The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor". Cell. 107 (3): 347–59. doi:10.1016/S0092-8674(01)00538-4. PMID 11701125. S2CID 6822193. https://doi.org/10.1016%2FS0092-8674%2801%2900538-4
Seimiya H, Sawada H, Muramatsu Y, Shimizu M, Ohko K, Yamane K, Tsuruo T (June 2000). "Involvement of 14-3-3 proteins in nuclear localization of telomerase". The EMBO Journal. 19 (11): 2652–61. doi:10.1093/emboj/19.11.2652. PMC 212742. PMID 10835362. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC212742
Sheng JF, Chen W, Yu Y, Liu J, Tao ZZ (December 2010). "PAR-4 and hTERT expression are negatively correlated after RNA interference targeting hTERT in laryngocarcinoma cells". Tissue & Cell. 42 (6): 365–9. doi:10.1016/j.tice.2010.08.002. PMID 20970818. /wiki/Doi_(identifier)