Menu
Home
People
Places
Arts
History
Plants & Animals
Science
Life & Culture
Technology
Reference.org
Quantum q-Krawtchouk polynomials
open-in-new
Definition
The polynomials are given in terms of
basic hypergeometric functions
by
K n q t m ( q − x ; p , N ; q ) = 2 ϕ 1 [ q − n , q − x q − N ; q ; p q n + 1 ] n = 0 , 1 , 2 , . . . , N . {\displaystyle K_{n}^{qtm}(q^{-x};p,N;q)={}_{2}\phi _{1}\left[{\begin{matrix}q^{-n},q^{-x}\\q^{-N}\end{matrix}};q;pq^{n+1}\right]\qquad n=0,1,2,...,N.}
Gasper, George; Rahman, Mizan (2004),
Basic hypergeometric series
, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.),
Cambridge University Press
,
ISBN
978-0-521-83357-8,
MR
2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010),
Hypergeometric orthogonal polynomials and their q-analogues
,
arXiv
:
math/9602214
,
doi
:
10.1007/978-3-642-05014-5
,
ISBN
978-3-642-05013-8,
MR
2656096
Koekoek, Roelof; Swarttouw, René F. (1996),
The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue
,
arXiv
:
math/9602214
,
Bibcode
:
1996math......2214K
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010),
"Chapter 18 Orthogonal Polynomials"
, in
Olver, Frank W. J.
; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.),
NIST Handbook of Mathematical Functions
, Cambridge University Press,
ISBN
978-0-521-19225-5,
MR
2723248
.