PPA is defined as follows. Suppose we have a graph on whose vertices are n {\displaystyle n} -bit binary strings, and the graph is represented by a polynomial-sized circuit that takes a vertex as input and outputs its neighbors. (Note that this allows us to represent an exponentially-large graph on which we can efficiently perform local exploration.) Suppose furthermore that a specific vertex (say the all-zeroes vector) has an odd number of neighbors. We are required to find another odd-degree vertex. Note that this problem is in NP—given a solution it may be verified using the circuit that the solution is correct. A function computation problem belongs to PPA if it admits a polynomial-time reduction to this graph search problem. A problem is complete for the class PPA if in addition, this graph search problem is reducible to that problem.
PPAD is defined in a similar way to PPA, except that it is defined on directed graphs. PPAD is a subclass of PPA. This is because the corresponding problem that defines PPAD, known as END OF THE LINE, can be reduced (in a straightforward way) to the above search for an additional odd-degree vertex (essentially, just by ignoring the directions of the edges in END OF THE LINE).
Christos Papadimitriou (1994). "On the complexity of the parity argument and other inefficient proofs of existence" (PDF). Journal of Computer and System Sciences. 48 (3): 498–532. doi:10.1016/S0022-0000(05)80063-7. Archived from the original (PDF) on 2016-03-04. Retrieved 2009-12-19. https://web.archive.org/web/20160304084618/http://www.cs.berkeley.edu/~christos/papers/On%20the%20Complexity.pdf ↩
Michelangelo Grigni (1995). "A Sperner Lemma Complete for PPA". Information Processing Letters. 77 (5–6): 255–259. CiteSeerX 10.1.1.63.9463. doi:10.1016/S0020-0190(00)00152-6. /wiki/Information_Processing_Letters ↩
A. Filos-Ratsikas; P.W. Goldberg (2018). "Consensus-Halving is PPA-Complete". Proc. of 50th Symposium on Theory of Computing. pp. 51–64. arXiv:1711.04503. doi:10.1145/3188745.3188880. /wiki/Symposium_on_Theory_of_Computing ↩
E. Jeřábek (2016). "Integer Factoring and Modular Square Roots". Journal of Computer and System Sciences. 82 (2): 380–394. arXiv:1207.5220. doi:10.1016/j.jcss.2015.08.001. /wiki/Journal_of_Computer_and_System_Sciences ↩