A partial linear space S = ( P , L , I ) {\displaystyle S=(P,L,I)} of order s , t {\displaystyle s,t} is called a semipartial geometry if there are integers α ≥ 1 , μ {\displaystyle \alpha \geq 1,\mu } such that:
A semipartial geometry is a partial geometry if and only if μ = α ( t + 1 ) {\displaystyle \mu =\alpha (t+1)} .
It can be easily shown that the collinearity graph of such a geometry is strongly regular with parameters ( 1 + s ( t + 1 ) + s ( t + 1 ) t ( s − α + 1 ) / μ , s ( t + 1 ) , s − 1 + t ( α − 1 ) , μ ) {\displaystyle (1+s(t+1)+s(t+1)t(s-\alpha +1)/\mu ,s(t+1),s-1+t(\alpha -1),\mu )} .
A nice example of such a geometry is obtained by taking the affine points of P G ( 3 , q 2 ) {\displaystyle \mathrm {PG} (3,q^{2})} and only those lines that intersect the plane at infinity in a point of a fixed Baer subplane; it has parameters ( s , t , α , μ ) = ( q 2 − 1 , q 2 + q , q , q ( q + 1 ) ) {\displaystyle (s,t,\alpha ,\mu )=(q^{2}-1,q^{2}+q,q,q(q+1))} .