When a photoconductive material is connected as part of a circuit, it functions as a resistor whose resistance depends on the light intensity. In this context, the material is called a photoresistor (also called light-dependent resistor or photoconductor). The most common application of photoresistors is as photodetectors, i.e. devices that measure light intensity. Photoresistors are not the only type of photodetector—other types include charge-coupled devices (CCDs), photodiodes and phototransistors—but they are among the most common. Some photodetector applications in which photoresistors are often used include camera light meters, street lights, clock radios, infrared detectors, nanophotonic systems and low-dimensional photo-sensors devices.
Sensitization is an important engineering procedure to amplify the response of photoconductive materials. The photoconductive gain is proportional to the lifetime of photo-excited carriers (either electrons or holes). Sensitization involves intentional impurity doping that saturates native recombination centers with a short characteristic lifetime, and replacing these centers with new recombination centers having a longer lifetime. This procedure, when done correctly, results in an increase in the photoconductive gain of several orders of magnitude and is used in the production of commercial photoconductive devices. The text by Albert Rose is the work of reference for sensitization.
In 2016 it was demonstrated that in some photoconductive material a magnetic order can exist. One prominent example is CH3NH3(Mn:Pb)I3. In this material a light induced magnetization melting was also demonstrated thus could be used in magneto optical devices and data storage.
The characterization technique called photoconductivity spectroscopy (also known as photocurrent spectroscopy) is widely used in studying optoelectronic properties of semiconductors.
DeWerd, L. A.; P. R. Moran (1978). "Solid-state electrophotography with Al2O3". Medical Physics. 5 (1): 23–26. Bibcode:1978MedPh...5...23D. doi:10.1118/1.594505. PMID 634229. /wiki/Bibcode_(identifier)
Saghaei, Jaber; Fallahzadeh, Ali; Saghaei, Tayebeh (June 2016). "Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods". Sensors and Actuators A: Physical. 247: 150–155. Bibcode:2016SeAcA.247..150S. doi:10.1016/j.sna.2016.05.050. /wiki/Bibcode_(identifier)
Pearsall, Thomas (2010). Photonics Essentials, 2nd edition. McGraw-Hill. ISBN 978-0-07-162935-5. 978-0-07-162935-5
Law, Kock Yee (1993). "Organic photoconductive materials: recent trends and developments". Chemical Reviews. 93: 449–486. doi:10.1021/cr00017a020. /wiki/Doi_(identifier)
Belev, G.; Kasap, S. O. (2004-10-15). "Amorphous selenium as an X-ray photoconductor". Journal of Non-Crystalline Solids. Physics of Non-Crystalline Solids 10. 345–346: 484–488. Bibcode:2004JNCS..345..484B. doi:10.1016/j.jnoncrysol.2004.08.070. ISSN 0022-3093. https://www.sciencedirect.com/science/article/pii/S0022309304006386
Weiss, David S.; Abkowitz, Martin (2010-01-13). "Advances in Organic Photoconductor Technology". Chemical Reviews. 110 (1): 479–526. doi:10.1021/cr900173r. ISSN 0009-2665. PMID 19848380. https://doi.org/10.1021/cr900173r
Cai, Wensi; Li, Haiyun; Li, Mengchao; Wang, Meng; Wang, Huaxin; Chen, Jiangzhao; Zang, Zhigang (2021-05-13). "Opportunities and challenges of inorganic perovskites in high-performance photodetectors". Journal of Physics D: Applied Physics. 54 (29): 293002. Bibcode:2021JPhD...54C3002C. doi:10.1088/1361-6463/abf709. ISSN 0022-3727. S2CID 234883317. https://iopscience.iop.org/article/10.1088/1361-6463/abf709
Aragoni, M. Carla; Arca, Massimiliano; Devillanova, Francesco A.; Isaia, Francesco; Lippolis, Vito; Mancini, Annalisa; Pala, Luca; Verani, Gaetano; Agostinelli, Tiziano; Caironi, Mario; Natali, Dario (2007-02-01). "First example of a near-IR photodetector based on neutral [M(R-dmet)2] bis(1,2-dithiolene) metal complexes". Inorganic Chemistry Communications. 10 (2): 191–194. doi:10.1016/j.inoche.2006.10.019. ISSN 1387-7003. https://www.sciencedirect.com/science/article/pii/S1387700306004011
Pintus, Anna; Ambrosio, Lucia; Aragoni, M. Carla; Binda, Maddalena; Coles, Simon J.; Hursthouse, Michael B.; Isaia, Francesco; Lippolis, Vito; Meloni, Giammarco; Natali, Dario; Orton, James B. (2020-05-04). "Photoconducting Devices with Response in the Visible–Near-Infrared Region Based on Neutral Ni Complexes of Aryl-1,2-dithiolene Ligands". Inorganic Chemistry. 59 (9): 6410–6421. doi:10.1021/acs.inorgchem.0c00491. hdl:11311/1146329. ISSN 0020-1669. PMID 32302124. S2CID 215809603. https://doi.org/10.1021/acs.inorgchem.0c00491
Hernández-Acosta, M A; Trejo-Valdez, M; Castro-Chacón, J H; Torres-San Miguel, C R; Martínez-Gutiérrez, H; Torres-Torres, C (23 February 2018). "Chaotic signatures of photoconductive Cu ZnSnS nanostructures explored by Lorenz attractors". New Journal of Physics. 20 (2): 023048. Bibcode:2018NJPh...20b3048H. doi:10.1088/1367-2630/aaad41. https://doi.org/10.1088%2F1367-2630%2Faaad41
Pearsall, Thomas (2010). Photonics Essentials, 2nd edition. McGraw-Hill. ISBN 978-0-07-162935-5. 978-0-07-162935-5
Rose, Albert (1963). Photoconductivity and Allied Problems. Interscience tracts on physics and astronomy. Wiley Interscience. ISBN 0-88275-568-4. {{cite book}}: ISBN / Date incompatibility (help) 0-88275-568-4
N V Joshi (25 May 1990). Photoconductivity: Art: Science & Technology. CRC Press. ISBN 978-0-8247-8321-1. 978-0-8247-8321-1
Staebler, D. L.; Wronski, C. R. (1977). "Reversible conductivity changes in discharge-produced amorphous Si". Applied Physics Letters. 31 (4): 292. Bibcode:1977ApPhL..31..292S. doi:10.1063/1.89674. ISSN 0003-6951. /wiki/Bibcode_(identifier)
Javadi, Mohammad; Abdi, Yaser (2018-07-30). "Frequency-driven bulk-to-surface transition of conductivity in ZnO nanowires". Applied Physics Letters. 113 (5): 051603. Bibcode:2018ApPhL.113e1603J. doi:10.1063/1.5039474. ISSN 0003-6951. https://aip.scitation.org/doi/abs/10.1063/1.5039474
Serpi, A. (1992). "Negative Photoconductivity in MoS2". Physica Status Solidi A. 133 (2): K73 – K77. Bibcode:1992PSSAR.133...73S. doi:10.1002/pssa.2211330248. ISSN 0031-8965. /wiki/Bibcode_(identifier)
Heyman, J. N.; Stein, J. D.; Kaminski, Z. S.; Banman, A. R.; Massari, A. M.; Robinson, J. T. (2015). "Carrier heating and negative photoconductivity in graphene". Journal of Applied Physics. 117 (1): 015101. arXiv:1410.7495. Bibcode:2015JAP...117a5101H. doi:10.1063/1.4905192. ISSN 0021-8979. S2CID 118531249. /wiki/ArXiv_(identifier)
Alexander-Webber, Jack A.; Groschner, Catherine K.; Sagade, Abhay A.; Tainter, Gregory; Gonzalez-Zalba, M. Fernando; Di Pietro, Riccardo; Wong-Leung, Jennifer; Tan, H. Hoe; Jagadish, Chennupati (2017-12-11). "Engineering the Photoresponse of InAs Nanowires". ACS Applied Materials & Interfaces. 9 (50): 43993–44000. doi:10.1021/acsami.7b14415. hdl:1885/237356. ISSN 1944-8244. PMID 29171260. https://doi.org/10.1021%2Facsami.7b14415
Jiménez-Marín, E.; Villalpando, I.; Trejo-Valdez, M.; Cervantes-Sodi, F.; Vargas-García, J. R.; Torres-Torres, C. (2017-06-01). "Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes". Materials Science and Engineering: B. 220: 22–29. doi:10.1016/j.mseb.2017.03.004. ISSN 0921-5107. https://www.sciencedirect.com/science/article/pii/S0921510717300569
Nakanishi, Hideyuki; Bishop, Kyle J. M.; Kowalczyk, Bartlomiej; Nitzan, Abraham; Weiss, Emily A.; Tretiakov, Konstantin V.; Apodaca, Mario M.; Klajn, Rafal; Stoddart, J. Fraser; Grzybowski, Bartosz A. (2009). "Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles". Nature. 460 (7253): 371–375. Bibcode:2009Natur.460..371N. doi:10.1038/nature08131. ISSN 0028-0836. PMID 19606145. S2CID 4425298. /wiki/Bibcode_(identifier)
Javadi, Mohammad; Abdi, Yaser (2018-07-30). "Frequency-driven bulk-to-surface transition of conductivity in ZnO nanowires". Applied Physics Letters. 113 (5): 051603. Bibcode:2018ApPhL.113e1603J. doi:10.1063/1.5039474. ISSN 0003-6951. https://aip.scitation.org/doi/abs/10.1063/1.5039474
Javadi, Mohammad; Abdi, Yaser (2018-07-30). "Frequency-driven bulk-to-surface transition of conductivity in ZnO nanowires". Applied Physics Letters. 113 (5): 051603. Bibcode:2018ApPhL.113e1603J. doi:10.1063/1.5039474. ISSN 0003-6951. https://aip.scitation.org/doi/abs/10.1063/1.5039474
Náfrádi, Bálint (24 November 2016). "Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3". Nature Communications. 7 (13406): 13406. arXiv:1611.08205. Bibcode:2016NatCo...713406N. doi:10.1038/ncomms13406. PMC 5123013. PMID 27882917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123013
Náfrádi, Bálint (24 November 2016). "Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3". Nature Communications. 7 (13406): 13406. arXiv:1611.08205. Bibcode:2016NatCo...713406N. doi:10.1038/ncomms13406. PMC 5123013. PMID 27882917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123013
"RSC Definition - Photocurrent spectroscopy". RSC. Retrieved 2020-07-19. https://www.rsc.org/publishing/journals/prospect/ontology.asp?id=CMO:0002602&MSID=C2JM15027A
Lamberti, Carlo; Agostini, Giovanni (2013). "15.3 - Photocurrent spectroscopy". Characterization of Semiconductor Heterostructures and Nanostructures (2 ed.). Italy: Elsevier. pp. 652–655. doi:10.1016/B978-0-444-59551-5.00001-7. ISBN 978-0-444-59551-5. 978-0-444-59551-5