Reviews of neuroimaging studies indicate that consistent aerobic exercise increases gray matter volume in nearly all regions of the brain, with more pronounced increases occurring in brain regions associated with memory processing, cognitive control, motor function, and reward; the most prominent gains in gray matter volume are seen in the prefrontal cortex, caudate nucleus, and hippocampus, which support cognitive control and memory processing, among other cognitive functions. Moreover, the left and right halves of the prefrontal cortex, the hippocampus, and the cingulate cortex appear to become more functionally interconnected in response to consistent aerobic exercise. Three reviews indicate that marked improvements in prefrontal and hippocampal gray matter volume occur in healthy adults that regularly engage in medium intensity exercise for several months. Other regions of the brain that demonstrate moderate or less significant gains in gray matter volume during neuroimaging include the anterior cingulate cortex, parietal cortex, cerebellum, and nucleus accumbens.
Regular exercise has been shown to counter the shrinking of the hippocampus and memory impairment that naturally occurs in late adulthood. Sedentary adults over age 55 show a 1–2% decline in hippocampal volume annually. A neuroimaging study with a sample of 120 adults revealed that participating in regular aerobic exercise increased the volume of the left hippocampus by 2.12% and the right hippocampus by 1.97% over a one-year period. Subjects in the low intensity stretching group who had higher fitness levels at baseline showed less hippocampal volume loss, providing evidence for exercise being protective against age-related cognitive decline. In general, individuals that exercise more over a given period have greater hippocampal volumes and better memory function. Aerobic exercise has also been shown to induce growth in the white matter tracts in the anterior corpus callosum, which normally shrink with age.
The various functions of the brain structures that show exercise-induced increases in gray matter volume include:
Concordant with the functional roles of the brain structures that exhibit increased gray matter volumes, regular exercise over a period of several months has been shown to persistently improve numerous executive functions and several forms of memory. In particular, consistent aerobic exercise has been shown to improve attentional control, information processing speed, cognitive flexibility (e.g., task switching), inhibitory control, working memory updating and capacity, declarative memory, and spatial memory. In healthy young and middle-aged adults, the effect sizes of improvements in cognitive function are largest for indices of executive functions and small to moderate for aspects of memory and information processing speed. It may be that in older adults, individuals benefit cognitively by taking part in both aerobic and resistance type exercise of at least moderate intensity. Individuals who have a sedentary lifestyle tend to have impaired executive functions relative to other more physically active non-exercisers. A reciprocal relationship between exercise and executive functions has also been noted: improvements in executive control processes, such as attentional control and inhibitory control, increase an individual's tendency to exercise.
One of the most significant effects of exercise on the brain is increased synthesis and expression of BDNF, a neuropeptide and hormone, resulting in increased signaling through its receptor tyrosine kinase, tropomyosin receptor kinase B (TrkB). Since BDNF is capable of crossing the blood–brain barrier, higher peripheral BDNF synthesis also increases BDNF signaling in the brain. Exercise-induced increases in BDNF signaling are associated with improved cognitive function, improved mood, and improved memory. Furthermore, research has provided a great deal of support for the role of BDNF in hippocampal neurogenesis, synaptic plasticity, and neural repair. Engaging in moderate-high intensity aerobic exercise such as running, swimming, and cycling increases BDNF biosynthesis through myokine signaling, resulting in up to a threefold increase in blood plasma and BDNF levels; exercise intensity is positively correlated with the magnitude of increased BDNF biosynthesis and expression. A meta-analysis of studies involving the effect of exercise on BDNF levels found that consistent exercise modestly increases resting BDNF levels as well. This has important implications for exercise as a mechanism to reduce stress since stress is closely linked with decreased levels of BDNF in the hippocampus. In fact, studies suggest that BDNF contributes to the anxiety-reducing effects of antidepressants. The increase in BDNF levels caused by exercise helps reverse the stress-induced decrease in BDNF which mediates stress in the short term and buffers against stress-related diseases in the long term.
In addition to the persistent effects on cognition that result from several months of daily exercise, acute exercise (i.e., a single bout of exercise) has been shown to transiently improve a number of cognitive functions. Reviews and meta-analyses of research on the effects of acute exercise on cognition in healthy young and middle-aged adults have concluded that information processing speed and a number of executive functions – including attention, working memory, problem solving, cognitive flexibility, verbal fluency, decision making, and inhibitory control – all improve for a period of up to 2 hours post-exercise. A systematic review of studies conducted on children also suggested that some of the exercise-induced improvements in executive function are apparent after single bouts of exercise, while other aspects (e.g., attentional control) only improve following consistent exercise on a regular basis. Other research has suggested immediate performative enhancements during exercise, such as exercise-concurrent improvements in processing speed and accuracy during both visual attention and working memory tasks.
In light of this observation, the original paper and both reviews suggest that phenethylamine plays a prominent role in mediating the mood-enhancing euphoric effects of a runner's high, as both phenethylamine and amphetamine are potent euphoriants.
However, human studies showed that pharmacological blockade of endogenous endorphins does not inhibit a runner's high, while blockade of endocannabinoids may have such an effect.
As a physical stressor, aerobic exercise stimulates cortisol secretion in an intensity-dependent manner; however, it does not result in long-term increases in cortisol production since this exercise-induced effect on cortisol is a response to transient negative energy balance. Aerobic exercise increases physical fitness and lowers neuroendocrine (i.e., HPA axis) reactivity and therefore reduces the biological response to psychological stress in humans (e.g., reduced cortisol release and attenuated heart rate response). Exercise also reverses stress-induced decreases in BDNF expression and signaling in the brain, thereby acting as a buffer against stress-related diseases like depression.
Exerkines are putative "signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways".
Engaging in active physical pursuits has demonstrated positive effects on the mental health of children and adolescents, enhances their academic performance, boosts cognitive function, and diminishes the likelihood of obesity and cardiovascular diseases among this demographic. Establishing consistent exercise routines with regular frequency and duration is pivotal. Cultivating beneficial exercise habits and sustaining adequate physical activity may support the overall physical and mental well-being of young individuals. Therefore, identifying factors that either impede or encourage exercise behaviors could be a significant strategy in promoting the development of healthy exercise habits among children and adolescents.
A 2003 meta-analysis found a positive effect of exercise in children on perceptual skills, intelligence quotient, achievement, verbal tests, mathematic tests, and academic readiness. The correlation was strongest for the age ranges of 4–7 and 11–13 years.
A 2010 meta-analysis of the effect of activity on children's executive function found that aerobic exercise may briefly aid children's executive function and also influence more lasting improvements to executive function. Other studies suggested that exercise is unrelated to academic performance, perhaps due to the parameters used to determine exactly what academic achievement is. This area of study has been a focus for education boards that make decisions on whether physical education should be implemented in the school curriculum, how much time should be dedicated to physical education, and its impact on other academic subjects.
Another study found that sixth-graders who participated in vigorous physical activity at least three times a week had the highest scores compared to those who participated in moderate or no physical activity at all. Children who participated in vigorous physical activity scored three points higher, on average, on their academic test, which consisted of math, science, English, and world studies.
Neuroimaging studies indicate that exercise may influence changes in brain structure and function. Some investigations have linked low levels of aerobic fitness in children with impaired executive function when older as adults, but lack of selective attention, response inhibition, and interference control may also explain this outcome.
Clinical and preclinical evidence indicate that consistent aerobic exercise, especially endurance exercise (e.g., marathon running), actually prevents the development of certain drug addictions and is an effective adjunct treatment for drug addiction, and psychostimulant addiction in particular. Consistent aerobic exercise magnitude-dependently (i.e., by duration and intensity) may reduce drug addiction risk, which appears to occur through the reversal of drug-induced, addiction-related neuroplasticity. Moreover, aerobic exercise decreases psychostimulant self-administration, reduces the reinstatement (i.e., relapse) of drug-seeking, and induces opposite effects on striatal dopamine receptor D2 (DRD2) signaling (increased DRD2 density) to those induced by pathological stimulant use (decreased DRD2 density). Consequently, consistent aerobic exercise may lead to better treatment outcomes when used as an adjunct treatment for drug addiction. As of 2016[update], more clinical research is still needed to understand the mechanisms and confirm the efficacy of exercise in drug addiction treatment and prevention.
Summary of addiction-related plasticity
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
McKee AC, Daneshvar DH, Alvarez VE, Stein TD (January 2014). "The neuropathology of sport". Acta Neuropathol. 127 (1): 29–51. doi:10.1007/s00401-013-1230-6. PMC 4255282. PMID 24366527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255282
Denham J, Marques FZ, O'Brien BJ, Charchar FJ (February 2014). "Exercise: putting action into our epigenome". Sports Med. 44 (2): 189–209. doi:10.1007/s40279-013-0114-1. PMID 24163284. S2CID 30210091. /wiki/Doi_(identifier)
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP (2014). "Cognitive control in the self-regulation of physical activity and sedentary behavior". Front Hum Neurosci. 8: 747. doi:10.3389/fnhum.2014.00747. PMC 4179677. PMID 25324754. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179677
Cox EP, O'Dwyer N, Cook R, Vetter M, Cheng HL, Rooney K, O'Connor H (August 2016). "Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review". J. Sci. Med. Sport. 19 (8): 616–628. doi:10.1016/j.jsams.2015.09.003. PMID 26552574. /wiki/Doi_(identifier)
CDC (1 August 2023). "Benefits of Physical Activity". Centers for Disease Control and Prevention. Retrieved 7 December 2023. https://www.cdc.gov/physicalactivity/basics/pa-health/index.htm
Schuch FB, Vancampfort D, Rosenbaum S, Richards J, Ward PB, Stubbs B (July 2016). "Exercise improves physical and psychological quality of life in people with depression: A meta-analysis including the evaluation of control group response". Psychiatry Res. 241: 47–54. doi:10.1016/j.psychres.2016.04.054. PMID 27155287. S2CID 4787287. https://kclpure.kcl.ac.uk/portal/en/publications/9d2c5d0c-a5a9-4e46-a763-6b1398bce0f6
Pratali L, Mastorci F, Vitiello N, Sironi A, Gastaldelli A, Gemignani A (November 2014). "Motor Activity in Aging: An Integrated Approach for Better Quality of Life". International Scholarly Research Notices. 2014: 257248. doi:10.1155/2014/257248. PMC 4897547. PMID 27351018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897547
Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, Sorrentino G (27 April 2018). "Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits". Frontiers in Psychology. 9: 509. doi:10.3389/fpsyg.2018.00509. PMC 5934999. PMID 29755380. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934999
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
Cox EP, O'Dwyer N, Cook R, Vetter M, Cheng HL, Rooney K, O'Connor H (August 2016). "Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review". J. Sci. Med. Sport. 19 (8): 616–628. doi:10.1016/j.jsams.2015.09.003. PMID 26552574. /wiki/Doi_(identifier)
Basso JC, Suzuki WA (March 2017). "The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review". Brain Plasticity. 2 (2): 127–152. doi:10.3233/BPL-160040. PMC 5928534. PMID 29765853. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928534
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Cox EP, O'Dwyer N, Cook R, Vetter M, Cheng HL, Rooney K, O'Connor H (August 2016). "Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review". J. Sci. Med. Sport. 19 (8): 616–628. doi:10.1016/j.jsams.2015.09.003. PMID 26552574. /wiki/Doi_(identifier)
Basso JC, Suzuki WA (March 2017). "The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review". Brain Plasticity. 2 (2): 127–152. doi:10.3233/BPL-160040. PMC 5928534. PMID 29765853. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928534
"Exercise and mental health". betterhealth.vic.gov.au. Department of Health & Human Services. Retrieved 19 November 2022. http://www.betterhealth.vic.gov.au/health/healthyliving/exercise-and-mental-health
"Exercise and Mental Health". Exercise Psychology: 93–94. 2013. doi:10.5040/9781492595502.part-002. ISBN 9781492595502. 9781492595502
Basso JC, Suzuki WA (March 2017). "The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review". Brain Plasticity. 2 (2): 127–152. doi:10.3233/BPL-160040. PMC 5928534. PMID 29765853. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928534
"10 great reasons to love aerobic exercise". Mayo Clinic. Retrieved 5 December 2023. https://www.mayoclinic.org/healthy-lifestyle/fitness/in-depth/aerobic-exercise/art-20045541
Schuch FB, Vancampfort D, Rosenbaum S, Richards J, Ward PB, Stubbs B (July 2016). "Exercise improves physical and psychological quality of life in people with depression: A meta-analysis including the evaluation of control group response". Psychiatry Res. 241: 47–54. doi:10.1016/j.psychres.2016.04.054. PMID 27155287. S2CID 4787287. https://kclpure.kcl.ac.uk/portal/en/publications/9d2c5d0c-a5a9-4e46-a763-6b1398bce0f6
Josefsson T, Lindwall M, Archer T (2014). "Physical exercise intervention in depressive disorders: meta-analysis and systematic review". Scand J Med Sci Sports. 24 (2): 259–272. doi:10.1111/sms.12050. PMID 23362828. S2CID 29351791. https://doi.org/10.1111%2Fsms.12050
Mura G, Moro MF, Patten SB, Carta MG (2014). "Exercise as an add-on strategy for the treatment of major depressive disorder: a systematic review". CNS Spectr. 19 (6): 496–508. doi:10.1017/S1092852913000953. PMID 24589012. S2CID 32304140. /wiki/Doi_(identifier)
Den Heijer AE, Groen Y, Tucha L, Fuermaier AB, Koerts J, Lange KW, Thome J, Tucha O (July 2016). "Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review". J. Neural Transm. (Vienna). 124 (Suppl 1): 3–26. doi:10.1007/s00702-016-1593-7. PMC 5281644. PMID 27400928. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281644
Petersen RC, Lopez O, Armstrong MJ, Getchius T, Ganguli M, Gloss D, Gronseth GS, Marson D, Pringsheim T, Day GS, Sager M, Stevens J, Rae-Grant A (January 2018). "Practice guideline update summary: Mild cognitive impairment – Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology". Neurology. Special article. 90 (3): 126–135. doi:10.1212/WNL.0000000000004826. PMC 5772157. PMID 29282327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772157
Carroll ME, Smethells JR (February 2016). "Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments". Front. Psychiatry. 6: 175. doi:10.3389/fpsyt.2015.00175. PMC 4745113. PMID 26903885. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745113
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA (September 2013). "Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis". Neurosci Biobehav Rev. 37 (8): 1622–1644. doi:10.1016/j.neubiorev.2013.06.011. PMC 3788047. PMID 23806439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788047
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Linke SE, Ussher M (2015). "Exercise-based treatments for substance use disorders: evidence, theory, and practicality". Am J Drug Alcohol Abuse. 41 (1): 7–15. doi:10.3109/00952990.2014.976708. PMC 4831948. PMID 25397661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831948
Farina N, Rusted J, Tabet N (January 2014). "The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review". Int Psychogeriatr. 26 (1): 9–18. doi:10.1017/S1041610213001385. PMID 23962667. S2CID 24936334. https://doi.org/10.1017%2FS1041610213001385
Tomlinson CL, Patel S, Meek C, Herd CP, Clarke CE, Stowe R, Shah L, Sackley CM, Deane KH, Wheatley K, Ives N (September 2013). "Physiotherapy versus placebo or no intervention in Parkinson's disease". Cochrane Database Syst Rev. 9 (9): CD002817. doi:10.1002/14651858.CD002817.pub4. PMC 7120224. PMID 24018704. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120224
Blondell SJ, Hammersley-Mather R, Veerman JL (May 2014). "Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies". BMC Public Health. 14: 510. doi:10.1186/1471-2458-14-510. PMC 4064273. PMID 24885250. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064273
Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 5, 351. ISBN 9780071481274. 9780071481274
Neurotrophic factors are peptides or other small proteins that promote the growth, survival, and differentiation of neurons by binding to and activating their associated tyrosine kinases.[28] /wiki/Peptide
Adult neurogenesis is the postnatal (after-birth) growth of new neurons, a beneficial form of neuroplasticity.[27]
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Szuhany KL, Bugatti M, Otto MW (October 2014). "A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor". J Psychiatr Res. 60C: 56–64. doi:10.1016/j.jpsychires.2014.10.003. PMC 4314337. PMID 25455510. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314337
Tarumi T, Zhang R (January 2014). "Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise". Front Physiol. 5: 6. doi:10.3389/fphys.2014.00006. PMC 3896879. PMID 24478719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896879
Batouli SH, Saba V (June 2017). "At least eighty percent of brain grey matter is modifiable by physical activity: A review study". Behavioural Brain Research. 332: 204–217. doi:10.1016/j.bbr.2017.06.002. PMID 28600001. S2CID 205895178. /wiki/Doi_(identifier)
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP (2014). "Cognitive control in the self-regulation of physical activity and sedentary behavior". Front Hum Neurosci. 8: 747. doi:10.3389/fnhum.2014.00747. PMC 4179677. PMID 25324754. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179677
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 147–148, 154–157. ISBN 9780071481274. 9780071481274
Lees C, Hopkins J (2013). "Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: a systematic review of randomized control trials". Prev Chronic Dis. 10: E174. doi:10.5888/pcd10.130010. PMC 3809922. PMID 24157077. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809922
Carvalho A, Rea IM, Parimon T, Cusack BJ (2014). "Physical activity and cognitive function in individuals over 60 years of age: a systematic review". Clin Interv Aging. 9: 661–682. doi:10.2147/CIA.S55520. PMC 3990369. PMID 24748784. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990369
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
Batouli SH, Saba V (June 2017). "At least eighty percent of brain grey matter is modifiable by physical activity: A review study". Behavioural Brain Research. 332: 204–217. doi:10.1016/j.bbr.2017.06.002. PMID 28600001. S2CID 205895178. /wiki/Doi_(identifier)
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Batouli SH, Saba V (June 2017). "At least eighty percent of brain grey matter is modifiable by physical activity: A review study". Behavioural Brain Research. 332: 204–217. doi:10.1016/j.bbr.2017.06.002. PMID 28600001. S2CID 205895178. /wiki/Doi_(identifier)
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP (2014). "Cognitive control in the self-regulation of physical activity and sedentary behavior". Front Hum Neurosci. 8: 747. doi:10.3389/fnhum.2014.00747. PMC 4179677. PMID 25324754. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179677
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
Valkanova V, Eguia Rodriguez R, Ebmeier KP (June 2014). "Mind over matter—what do we know about neuroplasticity in adults?". Int Psychogeriatr. 26 (6): 891–909. doi:10.1017/S1041610213002482. PMID 24382194. S2CID 20765865. https://doi.org/10.1017%2FS1041610213002482
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Ruscheweyh R, Willemer C, Krüger K, Duning T, Warnecke T, Sommer J, Völker K, Ho HV, Mooren F, Knecht S, Flöel A (July 2011). "Physical activity and memory functions: an interventional study". Neurobiol. Aging. 32 (7): 1304–19. doi:10.1016/j.neurobiolaging.2009.08.001. PMID 19716631. S2CID 22238883. /wiki/Doi_(identifier)
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (February 2011). "Exercise training increases size of hippocampus and improves memory". Proc. Natl. Acad. Sci. U.S.A. 108 (7): 3017–3022. Bibcode:2011PNAS..108.3017E. doi:10.1073/pnas.1015950108. PMC 3041121. PMID 21282661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041121
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (February 2011). "Exercise training increases size of hippocampus and improves memory". Proc. Natl. Acad. Sci. U.S.A. 108 (7): 3017–3022. Bibcode:2011PNAS..108.3017E. doi:10.1073/pnas.1015950108. PMC 3041121. PMID 21282661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041121
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (February 2011). "Exercise training increases size of hippocampus and improves memory". Proc. Natl. Acad. Sci. U.S.A. 108 (7): 3017–3022. Bibcode:2011PNAS..108.3017E. doi:10.1073/pnas.1015950108. PMC 3041121. PMID 21282661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041121
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Valkanova V, Eguia Rodriguez R, Ebmeier KP (June 2014). "Mind over matter—what do we know about neuroplasticity in adults?". Int Psychogeriatr. 26 (6): 891–909. doi:10.1017/S1041610213002482. PMID 24382194. S2CID 20765865. https://doi.org/10.1017%2FS1041610213002482
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 313–321. ISBN 9780071481274. 9780071481274
Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 148, 324–328, 438. ISBN 9780071481274. 9780071481274
Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, Ferrucci R, Fregni F, Galea JM, Hamada M, Manto M, Miall RC, Morales-Quezada L, Pope PA, Priori A, Rothwell J, Tomlinson SP, Celnik P (2014). "Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease". Neuroscientist. 22 (1): 83–97. doi:10.1177/1073858414559409. PMC 4712385. PMID 25406224. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712385
Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 148, 324–328, 438. ISBN 9780071481274. 9780071481274
Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 147, 266, 376. ISBN 9780071481274. 9780071481274
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 313–321. ISBN 9780071481274. 9780071481274
Sereno MI, Huang RS (2014). "Multisensory maps in parietal cortex". Curr. Opin. Neurobiol. 24 (1): 39–46. doi:10.1016/j.conb.2013.08.014. PMC 3969294. PMID 24492077. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969294
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 313–321. ISBN 9780071481274. 9780071481274
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 315. ISBN 9780071481274. 9780071481274
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 313–321. ISBN 9780071481274. 9780071481274
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP (2014). "Cognitive control in the self-regulation of physical activity and sedentary behavior". Front Hum Neurosci. 8: 747. doi:10.3389/fnhum.2014.00747. PMC 4179677. PMID 25324754. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179677
Janssen M, Toussaint HM, van Mechelen W, Verhagen EA (2014). "Effects of acute bouts of physical activity on children's attention: a systematic review of the literature". SpringerPlus. 3: 410. doi:10.1186/2193-1801-3-410. PMC 4132441. PMID 25133092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132441
Moreau D, Kirk IJ, Waldie, KE (2017). "High-intensity training enhances executive function in children in a randomized, placebo-controlled trial". eLife. 6:e25062. doi:10.7554/eLife.25062. PMC 5566451. PMID 28825973. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566451
Attentional control allows an individual to focus their attention on a specific source and ignore other stimuli that compete for one's attention,[32] such as in the cocktail party effect.
Inhibitory control is the process of altering one's learned behavioral responses, sometimes called "prepotent responses", in a way that makes it easier to complete a particular goal.[38][46] Inhibitory control allows individuals to control their impulses and habits when necessary or desired,[38][46] e.g., to overcome procrastination.
Working memory is the form of memory used by an individual at any given moment for active information processing,[32] such as when reading or writing an encyclopedia article. Working memory has a limited capacity and functions as an information buffer, analogous to a computer's data buffer, that permits the manipulation of information for comprehension, decision-making, and guidance of behavior.[38]
Declarative memory, also known as explicit memory, is the form of memory that pertains to facts and events.[39] /wiki/Explicit_memory
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP (2014). "Cognitive control in the self-regulation of physical activity and sedentary behavior". Front Hum Neurosci. 8: 747. doi:10.3389/fnhum.2014.00747. PMC 4179677. PMID 25324754. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179677
Cox EP, O'Dwyer N, Cook R, Vetter M, Cheng HL, Rooney K, O'Connor H (August 2016). "Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review". J. Sci. Med. Sport. 19 (8): 616–628. doi:10.1016/j.jsams.2015.09.003. PMID 26552574. /wiki/Doi_(identifier)
Janssen M, Toussaint HM, van Mechelen W, Verhagen EA (2014). "Effects of acute bouts of physical activity on children's attention: a systematic review of the literature". SpringerPlus. 3: 410. doi:10.1186/2193-1801-3-410. PMC 4132441. PMID 25133092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132441
Erickson KI, Hillman CH, Kramer AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. S2CID 54301951. /wiki/Doi_(identifier)
Cox EP, O'Dwyer N, Cook R, Vetter M, Cheng HL, Rooney K, O'Connor H (August 2016). "Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review". J. Sci. Med. Sport. 19 (8): 616–628. doi:10.1016/j.jsams.2015.09.003. PMID 26552574. /wiki/Doi_(identifier)
Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B (February 2018). "Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis". British Journal of Sports Medicine. 52 (3): 154–160. doi:10.1136/bjsports-2016-096587. PMID 28438770. S2CID 13553374. https://doi.org/10.1136%2Fbjsports-2016-096587
Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP (2014). "Cognitive control in the self-regulation of physical activity and sedentary behavior". Front Hum Neurosci. 8: 747. doi:10.3389/fnhum.2014.00747. PMC 4179677. PMID 25324754. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179677
Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP (2014). "Cognitive control in the self-regulation of physical activity and sedentary behavior". Front Hum Neurosci. 8: 747. doi:10.3389/fnhum.2014.00747. PMC 4179677. PMID 25324754. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179677
Denham J, Marques FZ, O'Brien BJ, Charchar FJ (February 2014). "Exercise: putting action into our epigenome". Sports Med. 44 (2): 189–209. doi:10.1007/s40279-013-0114-1. PMID 24163284. S2CID 30210091. /wiki/Doi_(identifier)
Phillips C, Baktir MA, Srivatsan M, Salehi A (2014). "Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling". Front Cell Neurosci. 8: 170. doi:10.3389/fncel.2014.00170. PMC 4064707. PMID 24999318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064707
Heinonen I, Kalliokoski KK, Hannukainen JC, Duncker DJ, Nuutila P, Knuuti J (November 2014). "Organ-Specific Physiological Responses to Acute Physical Exercise and Long-Term Training in Humans". Physiology. 29 (6): 421–436. doi:10.1152/physiol.00067.2013. PMID 25362636. /wiki/Doi_(identifier)
Tarumi T, Zhang R (January 2014). "Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise". Front Physiol. 5: 6. doi:10.3389/fphys.2014.00006. PMC 3896879. PMID 24478719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896879
Szuhany KL, Bugatti M, Otto MW (October 2014). "A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor". J Psychiatr Res. 60C: 56–64. doi:10.1016/j.jpsychires.2014.10.003. PMC 4314337. PMID 25455510. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314337
Phillips C, Baktir MA, Srivatsan M, Salehi A (2014). "Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling". Front Cell Neurosci. 8: 170. doi:10.3389/fncel.2014.00170. PMC 4064707. PMID 24999318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064707
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Phillips C, Baktir MA, Srivatsan M, Salehi A (2014). "Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling". Front Cell Neurosci. 8: 170. doi:10.3389/fncel.2014.00170. PMC 4064707. PMID 24999318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064707
Denham J, Marques FZ, O'Brien BJ, Charchar FJ (February 2014). "Exercise: putting action into our epigenome". Sports Med. 44 (2): 189–209. doi:10.1007/s40279-013-0114-1. PMID 24163284. S2CID 30210091. /wiki/Doi_(identifier)
Phillips C, Baktir MA, Srivatsan M, Salehi A (2014). "Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling". Front Cell Neurosci. 8: 170. doi:10.3389/fncel.2014.00170. PMC 4064707. PMID 24999318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064707
Heinonen I, Kalliokoski KK, Hannukainen JC, Duncker DJ, Nuutila P, Knuuti J (November 2014). "Organ-Specific Physiological Responses to Acute Physical Exercise and Long-Term Training in Humans". Physiology. 29 (6): 421–436. doi:10.1152/physiol.00067.2013. PMID 25362636. /wiki/Doi_(identifier)
Denham J, Marques FZ, O'Brien BJ, Charchar FJ (February 2014). "Exercise: putting action into our epigenome". Sports Med. 44 (2): 189–209. doi:10.1007/s40279-013-0114-1. PMID 24163284. S2CID 30210091. /wiki/Doi_(identifier)
Phillips C, Baktir MA, Srivatsan M, Salehi A (2014). "Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling". Front Cell Neurosci. 8: 170. doi:10.3389/fncel.2014.00170. PMC 4064707. PMID 24999318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064707
Heinonen I, Kalliokoski KK, Hannukainen JC, Duncker DJ, Nuutila P, Knuuti J (November 2014). "Organ-Specific Physiological Responses to Acute Physical Exercise and Long-Term Training in Humans". Physiology. 29 (6): 421–436. doi:10.1152/physiol.00067.2013. PMID 25362636. /wiki/Doi_(identifier)
Szuhany KL, Bugatti M, Otto MW (October 2014). "A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor". J Psychiatr Res. 60C: 56–64. doi:10.1016/j.jpsychires.2014.10.003. PMC 4314337. PMID 25455510. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314337
Anderson E, Shivakumar G (2013). "Effects of exercise and physical activity on anxiety". Frontiers in Psychiatry. 4: 27. doi:10.3389/fpsyt.2013.00027. PMC 3632802. PMID 23630504. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632802
Torres-Aleman I (2010). "Toward a comprehensive neurobiology of IGF-I". Dev Neurobiol. 70 (5): 384–96. doi:10.1002/dneu.20778. PMID 20186710. S2CID 27947753. https://doi.org/10.1002%2Fdneu.20778
Torres-Aleman I (2010). "Toward a comprehensive neurobiology of IGF-I". Dev Neurobiol. 70 (5): 384–96. doi:10.1002/dneu.20778. PMID 20186710. S2CID 27947753. https://doi.org/10.1002%2Fdneu.20778
Phillips C, Baktir MA, Srivatsan M, Salehi A (2014). "Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling". Front Cell Neurosci. 8: 170. doi:10.3389/fncel.2014.00170. PMC 4064707. PMID 24999318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064707
Aberg D (2010). "Role of the growth hormone/insulin-like growth factor 1 axis in neurogenesis". Endocr Dev. Endocrine Development. 17: 63–76. doi:10.1159/000262529. ISBN 978-3-8055-9302-1. PMID 19955757. 978-3-8055-9302-1
Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 221, 412. ISBN 9780071481274. 9780071481274
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Phillips C, Baktir MA, Srivatsan M, Salehi A (2014). "Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling". Front Cell Neurosci. 8: 170. doi:10.3389/fncel.2014.00170. PMC 4064707. PMID 24999318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064707
Torres-Aleman I (2010). "Toward a comprehensive neurobiology of IGF-I". Dev Neurobiol. 70 (5): 384–96. doi:10.1002/dneu.20778. PMID 20186710. S2CID 27947753. https://doi.org/10.1002%2Fdneu.20778
Aberg D (2010). "Role of the growth hormone/insulin-like growth factor 1 axis in neurogenesis". Endocr Dev. Endocrine Development. 17: 63–76. doi:10.1159/000262529. ISBN 978-3-8055-9302-1. PMID 19955757. 978-3-8055-9302-1
Torres-Aleman I (2010). "Toward a comprehensive neurobiology of IGF-I". Dev Neurobiol. 70 (5): 384–96. doi:10.1002/dneu.20778. PMID 20186710. S2CID 27947753. https://doi.org/10.1002%2Fdneu.20778
Aberg D (2010). "Role of the growth hormone/insulin-like growth factor 1 axis in neurogenesis". Endocr Dev. Endocrine Development. 17: 63–76. doi:10.1159/000262529. ISBN 978-3-8055-9302-1. PMID 19955757. 978-3-8055-9302-1
Gatti R, De Palo EF, Antonelli G, Spinella P (July 2012). "IGF-I/IGFBP system: metabolism outline and physical exercise". J. Endocrinol. Invest. 35 (7): 699–707. doi:10.3275/8456. PMID 22714057. S2CID 22974661. /wiki/Doi_(identifier)
Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 221, 412. ISBN 9780071481274. 9780071481274
Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 221, 412. ISBN 9780071481274. 9780071481274
Tarumi T, Zhang R (January 2014). "Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise". Front Physiol. 5: 6. doi:10.3389/fphys.2014.00006. PMC 3896879. PMID 24478719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896879
Bouchard J, Villeda SA (2015). "Aging and brain rejuvenation as systemic events". J. Neurochem. 132 (1): 5–19. doi:10.1111/jnc.12969. PMC 4301186. PMID 25327899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301186
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Bouchard J, Villeda SA (2015). "Aging and brain rejuvenation as systemic events". J. Neurochem. 132 (1): 5–19. doi:10.1111/jnc.12969. PMC 4301186. PMID 25327899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301186
Basso JC, Suzuki WA (March 2017). "The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review". Brain Plasticity. 2 (2): 127–152. doi:10.3233/BPL-160040. PMC 5928534. PMID 29765853. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928534
Basso JC, Shang A, Elman M, Karmouta R, Suzuki WA (November 2015). "Acute Exercise Improves Prefrontal Cortex but not Hippocampal Function in Healthy Adults". Journal of the International Neuropsychological Society. 21 (10): 791–801. doi:10.1017/S135561771500106X. PMID 26581791. https://doi.org/10.1017%2FS135561771500106X
McMorris T, Hale BJ (December 2012). "Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation". Brain and Cognition. 80 (3): 338–351. doi:10.1016/j.bandc.2012.09.001. PMID 23064033. S2CID 8320775. /wiki/Doi_(identifier)
Basso JC, Suzuki WA (March 2017). "The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review". Brain Plasticity. 2 (2): 127–152. doi:10.3233/BPL-160040. PMC 5928534. PMID 29765853. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928534
Basso JC, Shang A, Elman M, Karmouta R, Suzuki WA (November 2015). "Acute Exercise Improves Prefrontal Cortex but not Hippocampal Function in Healthy Adults". Journal of the International Neuropsychological Society. 21 (10): 791–801. doi:10.1017/S135561771500106X. PMID 26581791. https://doi.org/10.1017%2FS135561771500106X
McMorris T, Hale BJ (December 2012). "Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation". Brain and Cognition. 80 (3): 338–351. doi:10.1016/j.bandc.2012.09.001. PMID 23064033. S2CID 8320775. /wiki/Doi_(identifier)
Janssen M, Toussaint HM, van Mechelen W, Verhagen EA (2014). "Effects of acute bouts of physical activity on children's attention: a systematic review of the literature". SpringerPlus. 3: 410. doi:10.1186/2193-1801-3-410. PMC 4132441. PMID 25133092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132441
Dodwell G, Müller HJ, Töllner T (May 2019). "Electroencephalographic evidence for improved visual working memory performance during standing and exercise". British Journal of Psychology. 110 (2): 400–427. doi:10.1111/bjop.12352. PMID 30311188. S2CID 52960179. https://doi.org/10.1111%2Fbjop.12352
Dodwell G, Liesefeld HR, Conci M, Müller HJ, Töllner T (December 2021). "EEG evidence for enhanced attentional performance during moderate-intensity exercise". Psychophysiology. 58 (12): e13923. doi:10.1111/psyp.13923. ISSN 0048-5772. PMID 34370887. S2CID 236969156. https://onlinelibrary.wiley.com/doi/10.1111/psyp.13923
Cunha GS, Ribeiro JL, Oliveira AR (June 2008). "[Levels of beta-endorphin in response to exercise and overtraining]". Arq Bras Endocrinol Metabol (in Portuguese). 52 (4): 589–598. doi:10.1590/S0004-27302008000400004. hdl:10183/40053. PMID 18604371. https://doi.org/10.1590%2FS0004-27302008000400004
Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, Tolle TR (2008). "The runner's high: opioidergic mechanisms in the human brain". Cereb. Cortex. 18 (11): 2523–2531. doi:10.1093/cercor/bhn013. PMID 18296435. The runner's high describes an euphoric state resulting from long-distance running. https://doi.org/10.1093%2Fcercor%2Fbhn013
Raichlen DA, Foster AD, Gerdeman GL, Seillier A, Giuffrida A (2012). "Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the 'runner's high'". J. Exp. Biol. 215 (Pt 8): 1331–1336. Bibcode:2012JExpB.215.1331R. doi:10.1242/jeb.063677. PMID 22442371. S2CID 5129200. https://doi.org/10.1242%2Fjeb.063677
Cohen EE, Ejsmond-Frey R, Knight N, Dunbar RI (2010). "Rowers' high: behavioural synchrony is correlated with elevated pain thresholds". Biol. Lett. 6 (1): 106–108. doi:10.1098/rsbl.2009.0670. PMC 2817271. PMID 19755532. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817271
Friedman D (30 July 2024). "How to Optimize Your Workout to Boost Your Mood". The New York Times. ISSN 0362-4331. Retrieved 29 January 2025. https://www.nytimes.com/2024/07/30/well/move/exercise-boost-mood.html
Berry MD, Gainetdinov RR, Hoener MC, Shahid M (December 2017). "Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges". Pharmacology & Therapeutics. 180: 161–180. doi:10.1016/j.pharmthera.2017.07.002. PMID 28723415. S2CID 207366162. https://doi.org/10.1016%2Fj.pharmthera.2017.07.002
Szabo A, Billett E, Turner J (2001). "Phenylethylamine, a possible link to the antidepressant effects of exercise?". Br J Sports Med. 35 (5): 342–343. doi:10.1136/bjsm.35.5.342. PMC 1724404. PMID 11579070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724404
Lindemann L, Hoener MC (2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375. /wiki/Doi_(identifier)
Berry MD (2007). "The potential of trace amines and their receptors for treating neurological and psychiatric diseases". Rev Recent Clin Trials. 2 (1): 3–19. CiteSeerX 10.1.1.329.563. doi:10.2174/157488707779318107. PMID 18473983. /wiki/CiteSeerX_(identifier)
Szabo A, Billett E, Turner J (2001). "Phenylethylamine, a possible link to the antidepressant effects of exercise?". Br J Sports Med. 35 (5): 342–343. doi:10.1136/bjsm.35.5.342. PMC 1724404. PMID 11579070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724404
Lindemann L, Hoener MC (2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375. /wiki/Doi_(identifier)
Berry MD (2007). "The potential of trace amines and their receptors for treating neurological and psychiatric diseases". Rev Recent Clin Trials. 2 (1): 3–19. CiteSeerX 10.1.1.329.563. doi:10.2174/157488707779318107. PMID 18473983. /wiki/CiteSeerX_(identifier)
Szabo A, Billett E, Turner J (2001). "Phenylethylamine, a possible link to the antidepressant effects of exercise?". Br J Sports Med. 35 (5): 342–343. doi:10.1136/bjsm.35.5.342. PMC 1724404. PMID 11579070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724404
Lindemann L, Hoener MC (2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375. /wiki/Doi_(identifier)
Berry MD (2007). "The potential of trace amines and their receptors for treating neurological and psychiatric diseases". Rev Recent Clin Trials. 2 (1): 3–19. CiteSeerX 10.1.1.329.563. doi:10.2174/157488707779318107. PMID 18473983. /wiki/CiteSeerX_(identifier)
Broadley KJ (March 2010). "The vascular effects of trace amines and amphetamines". Pharmacol. Ther. 125 (3): 363–375. doi:10.1016/j.pharmthera.2009.11.005. PMID 19948186. /wiki/Doi_(identifier)
Broadley KJ (March 2010). "The vascular effects of trace amines and amphetamines". Pharmacol. Ther. 125 (3): 363–375. doi:10.1016/j.pharmthera.2009.11.005. PMID 19948186. /wiki/Doi_(identifier)
Szabo A, Billett E, Turner J (2001). "Phenylethylamine, a possible link to the antidepressant effects of exercise?". Br J Sports Med. 35 (5): 342–343. doi:10.1136/bjsm.35.5.342. PMC 1724404. PMID 11579070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724404
Lindemann L, Hoener MC (2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375. /wiki/Doi_(identifier)
Berry MD (2007). "The potential of trace amines and their receptors for treating neurological and psychiatric diseases". Rev Recent Clin Trials. 2 (1): 3–19. CiteSeerX 10.1.1.329.563. doi:10.2174/157488707779318107. PMID 18473983. /wiki/CiteSeerX_(identifier)
Dinas PC, Koutedakis Y, Flouris AD (2011). "Effects of exercise and physical activity on depression". Ir J Med Sci. 180 (2): 319–325. doi:10.1007/s11845-010-0633-9. PMID 21076975. S2CID 40951545. /wiki/Doi_(identifier)
Dinas PC, Koutedakis Y, Flouris AD (2011). "Effects of exercise and physical activity on depression". Ir J Med Sci. 180 (2): 319–325. doi:10.1007/s11845-010-0633-9. PMID 21076975. S2CID 40951545. /wiki/Doi_(identifier)
Dinas PC, Koutedakis Y, Flouris AD (2011). "Effects of exercise and physical activity on depression". Ir J Med Sci. 180 (2): 319–325. doi:10.1007/s11845-010-0633-9. PMID 21076975. S2CID 40951545. /wiki/Doi_(identifier)
Dinas PC, Koutedakis Y, Flouris AD (2011). "Effects of exercise and physical activity on depression". Ir J Med Sci. 180 (2): 319–325. doi:10.1007/s11845-010-0633-9. PMID 21076975. S2CID 40951545. /wiki/Doi_(identifier)
Siebers M, Biedermann SV, Bindila L, Lutz B, Fuss J (April 2021). "Exercise-induced euphoria and anxiolysis do not depend on endogenous opioids in humans". Psychoneuroendocrinology. 126: 105173. doi:10.1016/j.psyneuen.2021.105173. PMID 33582575. S2CID 231858251. /wiki/Doi_(identifier)
Raichlen DA, Foster AD, Gerdeman GL, Seillier A, Giuffrida A (2012). "Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the 'runner's high'". J. Exp. Biol. 215 (Pt 8): 1331–1336. Bibcode:2012JExpB.215.1331R. doi:10.1242/jeb.063677. PMID 22442371. S2CID 5129200. https://doi.org/10.1242%2Fjeb.063677
Tantimonaco M, Ceci R, Sabatini S, Catani MV, Rossi A, Gasperi V, Maccarrone M (2014). "Physical activity and the endocannabinoid system: an overview". Cell. Mol. Life Sci. 71 (14): 2681–2698. doi:10.1007/s00018-014-1575-6. PMC 11113821. PMID 24526057. S2CID 14531019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113821
Tantimonaco M, Ceci R, Sabatini S, Catani MV, Rossi A, Gasperi V, Maccarrone M (2014). "Physical activity and the endocannabinoid system: an overview". Cell. Mol. Life Sci. 71 (14): 2681–2698. doi:10.1007/s00018-014-1575-6. PMC 11113821. PMID 24526057. S2CID 14531019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113821
Tantimonaco M, Ceci R, Sabatini S, Catani MV, Rossi A, Gasperi V, Maccarrone M (2014). "Physical activity and the endocannabinoid system: an overview". Cell. Mol. Life Sci. 71 (14): 2681–2698. doi:10.1007/s00018-014-1575-6. PMC 11113821. PMID 24526057. S2CID 14531019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113821
Raichlen DA, Foster AD, Gerdeman GL, Seillier A, Giuffrida A (2012). "Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the 'runner's high'". J. Exp. Biol. 215 (Pt 8): 1331–1336. Bibcode:2012JExpB.215.1331R. doi:10.1242/jeb.063677. PMID 22442371. S2CID 5129200. https://doi.org/10.1242%2Fjeb.063677
Tantimonaco M, Ceci R, Sabatini S, Catani MV, Rossi A, Gasperi V, Maccarrone M (2014). "Physical activity and the endocannabinoid system: an overview". Cell. Mol. Life Sci. 71 (14): 2681–2698. doi:10.1007/s00018-014-1575-6. PMC 11113821. PMID 24526057. S2CID 14531019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113821
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 14: Mood and Emotion". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 350–359. ISBN 9780071481274. 9780071481274
Fuqua JS, Rogol AD (July 2013). "Neuroendocrine alterations in the exercising human: implications for energy homeostasis". Metab. Clin. Exp. 62 (7): 911–921. doi:10.1016/j.metabol.2013.01.016. PMID 23415825. /wiki/Doi_(identifier)
Ebner NC, Kamin H, Diaz V, Cohen RA, MacDonald K (January 2015). "Hormones as 'difference makers' in cognitive and socioemotional aging processes". Front Psychol. 5: 1595. doi:10.3389/fpsyg.2014.01595. PMC 4302708. PMID 25657633. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302708
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 14: Mood and Emotion". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 350–359. ISBN 9780071481274. 9780071481274
Fuqua JS, Rogol AD (July 2013). "Neuroendocrine alterations in the exercising human: implications for energy homeostasis". Metab. Clin. Exp. 62 (7): 911–921. doi:10.1016/j.metabol.2013.01.016. PMID 23415825. /wiki/Doi_(identifier)
Ebner NC, Kamin H, Diaz V, Cohen RA, MacDonald K (January 2015). "Hormones as 'difference makers' in cognitive and socioemotional aging processes". Front Psychol. 5: 1595. doi:10.3389/fpsyg.2014.01595. PMC 4302708. PMID 25657633. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302708
Fuqua JS, Rogol AD (July 2013). "Neuroendocrine alterations in the exercising human: implications for energy homeostasis". Metab. Clin. Exp. 62 (7): 911–921. doi:10.1016/j.metabol.2013.01.016. PMID 23415825. /wiki/Doi_(identifier)
Ebner NC, Kamin H, Diaz V, Cohen RA, MacDonald K (January 2015). "Hormones as 'difference makers' in cognitive and socioemotional aging processes". Front Psychol. 5: 1595. doi:10.3389/fpsyg.2014.01595. PMC 4302708. PMID 25657633. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302708
Ebner NC, Kamin H, Diaz V, Cohen RA, MacDonald K (January 2015). "Hormones as 'difference makers' in cognitive and socioemotional aging processes". Front Psychol. 5: 1595. doi:10.3389/fpsyg.2014.01595. PMC 4302708. PMID 25657633. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302708
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 14: Mood and Emotion". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 350–359. ISBN 9780071481274. 9780071481274
Fuqua JS, Rogol AD (July 2013). "Neuroendocrine alterations in the exercising human: implications for energy homeostasis". Metab. Clin. Exp. 62 (7): 911–921. doi:10.1016/j.metabol.2013.01.016. PMID 23415825. /wiki/Doi_(identifier)
In healthy individuals, this energy deficit resolves simply from eating and drinking a sufficient amount of food and beverage after exercising.
Fuqua JS, Rogol AD (July 2013). "Neuroendocrine alterations in the exercising human: implications for energy homeostasis". Metab. Clin. Exp. 62 (7): 911–921. doi:10.1016/j.metabol.2013.01.016. PMID 23415825. /wiki/Doi_(identifier)
Basso JC, Suzuki WA (March 2017). "The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review". Brain Plasticity. 2 (2): 127–152. doi:10.3233/BPL-160040. PMC 5928534. PMID 29765853. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928534
Zschucke E, Gaudlitz K, Ströhle A (January 2013). "Exercise and physical activity in mental disorders: clinical and experimental evidence". J Prev Med Public Health. 46 (Suppl 1): S12–521. doi:10.3961/jpmph.2013.46.S.S12. PMC 3567313. PMID 23412549. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567313
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 14: Mood and Emotion". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 350–359. ISBN 9780071481274. 9780071481274
Zschucke E, Gaudlitz K, Ströhle A (January 2013). "Exercise and physical activity in mental disorders: clinical and experimental evidence". J Prev Med Public Health. 46 (Suppl 1): S12–521. doi:10.3961/jpmph.2013.46.S.S12. PMC 3567313. PMID 23412549. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567313
Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 5: Excitatory and Inhibitory Amino Acids". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 117–130. ISBN 9780071481274. 9780071481274
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA (September 2013). "Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis". Neurosci Biobehav Rev. 37 (8): 1622–1644. doi:10.1016/j.neubiorev.2013.06.011. PMC 3788047. PMID 23806439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788047
Mischel NA, Subramanian M, Dombrowski MD, Llewellyn-Smith IJ, Mueller PJ (May 2015). "(In)activity-related neuroplasticity in brainstem control of sympathetic outflow: unraveling underlying molecular, cellular, and anatomical mechanisms". Am. J. Physiol. Heart Circ. Physiol. 309 (2): H235–43. doi:10.1152/ajpheart.00929.2014. PMC 4504968. PMID 25957223. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4504968
Mischel NA, Subramanian M, Dombrowski MD, Llewellyn-Smith IJ, Mueller PJ (May 2015). "(In)activity-related neuroplasticity in brainstem control of sympathetic outflow: unraveling underlying molecular, cellular, and anatomical mechanisms". Am. J. Physiol. Heart Circ. Physiol. 309 (2): H235–43. doi:10.1152/ajpheart.00929.2014. PMC 4504968. PMID 25957223. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4504968
Chow LS, Gerszten RE, Taylor JM, et al. (May 2022). "Exerkines in health, resilience and disease". Nature Reviews. Endocrinology. 18 (5): 273–289. doi:10.1038/s41574-022-00641-2. PMC 9554896. PMID 35304603. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554896
Strong WB, Malina RM, Blimkie CJ, et al. (June 2005). "Evidence Based Physical Activity for School-age Youth". The Journal of Pediatrics. 146 (6): 732–737. doi:10.1016/j.jpeds.2005.01.055. ISSN 0022-3476. PMID 15973308. https://dx.doi.org/10.1016/j.jpeds.2005.01.055
"Physical activity levels among children aged 9-13 years: United States, 2002". PsycEXTRA Dataset. 2002. doi:10.1037/e303072004-001. Retrieved 8 December 2023. https://dx.doi.org/10.1037/e303072004-001
Ebbeling CB, Pawlak DB, Ludwig DS (August 2002). "Childhood obesity: public-health crisis, common sense cure". The Lancet. 360 (9331): 473–482. doi:10.1016/s0140-6736(02)09678-2. ISSN 0140-6736. PMID 12241736. S2CID 6374501. https://dx.doi.org/10.1016/s0140-6736(02)09678-2
Ward DS, Saunders RP, Pate RR (2007). Physical Activity Interventions in Children and Adolescents. doi:10.5040/9781492596868. ISBN 9781492596868. 9781492596868
van Sluijs EM, McMinn AM, Griffin SJ (20 September 2007). "Effectiveness of interventions to promote physical activity in children and adolescents: systematic review of controlled trials". BMJ. 335 (7622): 703. doi:10.1136/bmj.39320.843947.be. ISSN 0959-8138. PMC 2001088. PMID 17884863. S2CID 5659723. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001088
Pate RR, Trost SG, Mullis R, Sallis JF, Wechsler H, Brown DR (August 2000). "Community Interventions to Promote Proper Nutrition and Physical Activity among Youth". Preventive Medicine. 31 (2): S138 – S149. doi:10.1006/pmed.2000.0632. ISSN 0091-7435. https://dx.doi.org/10.1006/pmed.2000.0632
Stone EJ, McKenzie TL, Welk GJ, Booth ML (November 1998). "Effects of physical activity interventions in youth". American Journal of Preventive Medicine. 15 (4): 298–315. doi:10.1016/s0749-3797(98)00082-8. ISSN 0749-3797. PMID 9838974. https://dx.doi.org/10.1016/s0749-3797(98)00082-8
Sibley BA, Etnier JL (August 2003). "The Relationship between Physical Activity and Cognition in Children: A Meta-Analysis". Pediatric Exercise Science. 15 (3): 243–256. doi:10.1123/pes.15.3.243. S2CID 56815489. /wiki/Doi_(identifier)
Sibley BA, Etnier JL (August 2003). "The Relationship between Physical Activity and Cognition in Children: A Meta-Analysis". Pediatric Exercise Science. 15 (3): 243–256. doi:10.1123/pes.15.3.243. S2CID 56815489. /wiki/Doi_(identifier)
Best JR (December 2010). "Effects of Physical Activity on Children's Executive Function: Contributions of Experimental Research on Aerobic Exercise". Developmental Review. 30 (4): 331–551. doi:10.1016/j.dr.2010.08.001. PMC 3147174. PMID 21818169. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147174
Hillman CH, Erickson KI, Kramer AF (January 2008). "Be smart, exercise your heart: exercise effects on brain and cognition". Nature Reviews. Neuroscience. 9 (1): 58–65. doi:10.1038/nrn2298. PMID 18094706. S2CID 1204039. /wiki/Doi_(identifier)
Sibley BA, Etnier JL (August 2003). "The Relationship between Physical Activity and Cognition in Children: A Meta-Analysis". Pediatric Exercise Science. 15 (3): 243–256. doi:10.1123/pes.15.3.243. S2CID 56815489. /wiki/Doi_(identifier)
Coe DP, Pivarnik JM, Womack CJ, Reeves MJ, Malina RM (August 2006). "Effect of physical education and activity levels on academic achievement in children". Medicine and Science in Sports and Exercise. 38 (8): 1515–1519. doi:10.1249/01.mss.0000227537.13175.1b. PMID 16888468. S2CID 9676116. https://doi.org/10.1249%2F01.mss.0000227537.13175.1b
Hillman CH, Erickson KI, Kramer AF (January 2008). "Be smart, exercise your heart: exercise effects on brain and cognition". Nature Reviews. Neuroscience. 9 (1): 58–65. doi:10.1038/nrn2298. PMID 18094706. S2CID 1204039. /wiki/Doi_(identifier)
Chaddock L, Hillman CH, Buck SM, Cohen NJ (February 2011). "Aerobic fitness and executive control of relational memory in preadolescent children". Medicine and Science in Sports and Exercise. 43 (2): 344–349. doi:10.1249/MSS.0b013e3181e9af48. PMID 20508533. S2CID 400283. https://doi.org/10.1249%2FMSS.0b013e3181e9af48
Carroll ME, Smethells JR (February 2016). "Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments". Front. Psychiatry. 6: 175. doi:10.3389/fpsyt.2015.00175. PMC 4745113. PMID 26903885. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745113
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA (September 2013). "Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis". Neurosci Biobehav Rev. 37 (8): 1622–1644. doi:10.1016/j.neubiorev.2013.06.011. PMC 3788047. PMID 23806439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788047
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Linke SE, Ussher M (2015). "Exercise-based treatments for substance use disorders: evidence, theory, and practicality". Am J Drug Alcohol Abuse. 41 (1): 7–15. doi:10.3109/00952990.2014.976708. PMC 4831948. PMID 25397661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831948
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA (September 2013). "Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis". Neurosci Biobehav Rev. 37 (8): 1622–1644. doi:10.1016/j.neubiorev.2013.06.011. PMC 3788047. PMID 23806439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788047
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA (September 2013). "Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis". Neurosci Biobehav Rev. 37 (8): 1622–1644. doi:10.1016/j.neubiorev.2013.06.011. PMC 3788047. PMID 23806439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788047
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA (September 2013). "Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis". Neurosci Biobehav Rev. 37 (8): 1622–1644. doi:10.1016/j.neubiorev.2013.06.011. PMC 3788047. PMID 23806439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788047
Linke SE, Ussher M (2015). "Exercise-based treatments for substance use disorders: evidence, theory, and practicality". Am J Drug Alcohol Abuse. 41 (1): 7–15. doi:10.3109/00952990.2014.976708. PMC 4831948. PMID 25397661. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831948
Carroll ME, Smethells JR (February 2016). "Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments". Front. Psychiatry. 6: 175. doi:10.3389/fpsyt.2015.00175. PMC 4745113. PMID 26903885. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745113
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704
Den Heijer AE, Groen Y, Tucha L, Fuermaier AB, Koerts J, Lange KW, Thome J, Tucha O (July 2016). "Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review". J. Neural Transm. (Vienna). 124 (Suppl 1): 3–26. doi:10.1007/s00702-016-1593-7. PMC 5281644. PMID 27400928. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281644
Rommel AS, Halperin JM, Mill J, Asherson P, Kuntsi J (September 2013). "Protection from genetic diathesis in attention-deficit/hyperactivity disorder: possible complementary roles of exercise". J. Am. Acad. Child Adolesc. Psychiatry. 52 (9): 900–910. doi:10.1016/j.jaac.2013.05.018. PMC 4257065. PMID 23972692. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257065
Den Heijer AE, Groen Y, Tucha L, Fuermaier AB, Koerts J, Lange KW, Thome J, Tucha O (July 2016). "Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review". J. Neural Transm. (Vienna). 124 (Suppl 1): 3–26. doi:10.1007/s00702-016-1593-7. PMC 5281644. PMID 27400928. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281644
Den Heijer AE, Groen Y, Tucha L, Fuermaier AB, Koerts J, Lange KW, Thome J, Tucha O (July 2016). "Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review". J. Neural Transm. (Vienna). 124 (Suppl 1): 3–26. doi:10.1007/s00702-016-1593-7. PMC 5281644. PMID 27400928. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281644
Den Heijer AE, Groen Y, Tucha L, Fuermaier AB, Koerts J, Lange KW, Thome J, Tucha O (July 2016). "Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review". J. Neural Transm. (Vienna). 124 (Suppl 1): 3–26. doi:10.1007/s00702-016-1593-7. PMC 5281644. PMID 27400928. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281644
Den Heijer AE, Groen Y, Tucha L, Fuermaier AB, Koerts J, Lange KW, Thome J, Tucha O (July 2016). "Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review". J. Neural Transm. (Vienna). 124 (Suppl 1): 3–26. doi:10.1007/s00702-016-1593-7. PMC 5281644. PMID 27400928. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281644
Noetel M, Sanders T, Gallardo-Gómez D, Taylor P, Del Pozo Cruz B, van den Hoek D, Smith JJ, Mahoney J, Spathis J, Moresi M, Pagano R, Pagano L, Vasconcellos R, Arnott H, Varley B, Parker P, Biddle S, Lonsdale C (14 February 2024). "Effect of exercise for depression: systematic review and network meta-analysis of randomised controlled trials". BMJ (Clinical Research Ed.). 384: e075847. doi:10.1136/bmj-2023-075847. PMC 10870815. PMID 38355154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870815
Josefsson T, Lindwall M, Archer T (2014). "Physical exercise intervention in depressive disorders: meta-analysis and systematic review". Scand J Med Sci Sports. 24 (2): 259–272. doi:10.1111/sms.12050. PMID 23362828. S2CID 29351791. https://doi.org/10.1111%2Fsms.12050
Rosenbaum S, Tiedemann A, Sherrington C, Curtis J, Ward PB (2014). "Physical activity interventions for people with mental illness: a systematic review and meta-analysis". J Clin Psychiatry. 75 (9): 964–974. doi:10.4088/JCP.13r08765. PMID 24813261. /wiki/Doi_(identifier)
Mura G, Moro MF, Patten SB, Carta MG (2014). "Exercise as an add-on strategy for the treatment of major depressive disorder: a systematic review". CNS Spectr. 19 (6): 496–508. doi:10.1017/S1092852913000953. PMID 24589012. S2CID 32304140. /wiki/Doi_(identifier)
Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M, Mead GE (September 2013). "Exercise for depression". Cochrane Database Syst. Rev. 2013 (9): CD004366. doi:10.1002/14651858.CD004366.pub6. PMC 9721454. PMID 24026850. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721454
Mura G, Moro MF, Patten SB, Carta MG (2014). "Exercise as an add-on strategy for the treatment of major depressive disorder: a systematic review". CNS Spectr. 19 (6): 496–508. doi:10.1017/S1092852913000953. PMID 24589012. S2CID 32304140. /wiki/Doi_(identifier)
Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M, Mead GE (September 2013). "Exercise for depression". Cochrane Database Syst. Rev. 2013 (9): CD004366. doi:10.1002/14651858.CD004366.pub6. PMC 9721454. PMID 24026850. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721454
Mura G, Moro MF, Patten SB, Carta MG (2014). "Exercise as an add-on strategy for the treatment of major depressive disorder: a systematic review". CNS Spectr. 19 (6): 496–508. doi:10.1017/S1092852913000953. PMID 24589012. S2CID 32304140. /wiki/Doi_(identifier)
Josefsson T, Lindwall M, Archer T (2014). "Physical exercise intervention in depressive disorders: meta-analysis and systematic review". Scand J Med Sci Sports. 24 (2): 259–272. doi:10.1111/sms.12050. PMID 23362828. S2CID 29351791. https://doi.org/10.1111%2Fsms.12050
Rosenbaum S, Tiedemann A, Sherrington C, Curtis J, Ward PB (2014). "Physical activity interventions for people with mental illness: a systematic review and meta-analysis". J Clin Psychiatry. 75 (9): 964–974. doi:10.4088/JCP.13r08765. PMID 24813261. /wiki/Doi_(identifier)
Gong H, Ni C, Shen X, Wu T, Jiang C (February 2015). "Yoga for prenatal depression: a systematic review and meta-analysis". BMC Psychiatry. 15: 14. doi:10.1186/s12888-015-0393-1. PMC 4323231. PMID 25652267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323231
Gomez-Pinilla F, Hillman C (January 2013). "The influence of exercise on cognitive abilities". Comprehensive Physiology. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. 9780470650714
Miller KJ, Gonçalves-Bradley DC, Areerob P, Hennessy D, Mesagno C, Grace F (2020). "Comparative effectiveness of three exercise types to treat clinical depression in older adults: A systematic review and network meta-analysis of randomised controlled trials". Ageing Research Reviews. 58: 100999. doi:10.1016/j.arr.2019.100999. hdl:1959.17/172086. PMID 31837462. S2CID 209179889. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/172086
Noetel M, Sanders T, Gallardo-Gómez D, Taylor P, Del Pozo Cruz B, van den Hoek D, Smith JJ, Mahoney J, Spathis J, Moresi M, Pagano R, Pagano L, Vasconcellos R, Arnott H, Varley B, Parker P, Biddle S, Lonsdale C (14 February 2024). "Effect of exercise for depression: systematic review and network meta-analysis of randomised controlled trials". BMJ (Clinical Research Ed.). 384: e075847. doi:10.1136/bmj-2023-075847. PMC 10870815. PMID 38355154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870815
O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. (July 2010). "Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study". Lancet. 376 (9735): 112–123. doi:10.1016/s0140-6736(10)60834-3. PMID 20561675. S2CID 2753073. /wiki/Doi_(identifier)
Lee CD, Folsom AR, Blair SN (October 2003). "Physical activity and stroke risk: a meta-analysis". Stroke. 34 (10): 2475–2481. doi:10.1161/01.STR.0000091843.02517.9D. PMID 14500932. S2CID 2332015. https://doi.org/10.1161%2F01.STR.0000091843.02517.9D
Viktorisson A, Palstam A, Nyberg F, Berg C, Lissner L, Sunnerhagen KS (29 May 2024). "Domain-Specific Physical Activity and Stroke in Sweden". JAMA Network Open. 7 (5): e2413453. doi:10.1001/jamanetworkopen.2024.13453. ISSN 2574-3805. PMC 11137634. PMID 38809556. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137634
Viktorisson A, Reinholdsson M, Danielsson A, Palstam A, Sunnerhagen KS (January 2022). "Pre-stroke physical activity in relation to post-stroke outcomes - linked to the International Classification of Functioning, Disability and Health (ICF): A scoping review". Journal of Rehabilitation Medicine. 54: jrm00251. doi:10.2340/jrm.v53.51. PMC 8862654. PMID 34904691. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862654
Ding YH, Luan XD, Li J, Rafols JA, Guthinkonda M, Diaz FG, Ding Y (December 2004). "Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke". Current Neurovascular Research. 1 (5): 411–420. doi:10.2174/1567202043361875. PMID 16181089. S2CID 22015361. /wiki/Doi_(identifier)
Rezaei R, Nasoohi S, Haghparast A, Khodagholi F, Bigdeli MR, Nourshahi M (August 2018). "High intensity exercise preconditioning provides differential protection against brain injury following experimental stroke". Life Sciences. 207: 30–35. doi:10.1016/j.lfs.2018.03.007. PMID 29522768. S2CID 3812671. /wiki/Doi_(identifier)
Gao Y, Zhao Y, Pan J, Yang L, Huang T, Feng X, et al. (October 2014). "Treadmill exercise promotes angiogenesis in the ischemic penumbra of rat brains through caveolin-1/VEGF signaling pathways". Brain Research. 1585: 83–90. doi:10.1016/j.brainres.2014.08.032. PMID 25148708. S2CID 25507984. /wiki/Doi_(identifier)
Endres M, Gertz K, Lindauer U, Katchanov J, Schultze J, Schröck H, et al. (November 2003). "Mechanisms of stroke protection by physical activity". Annals of Neurology. 54 (5): 582–590. doi:10.1002/ana.10722. PMID 14595647. S2CID 28445967. /wiki/Doi_(identifier)
Gertz K, Priller J, Kronenberg G, Fink KB, Winter B, Schröck H, et al. (November 2006). "Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow". Circulation Research. 99 (10): 1132–1140. doi:10.1161/01.RES.0000250175.14861.77. PMID 17038638. S2CID 9063866. https://doi.org/10.1161%2F01.RES.0000250175.14861.77
Hafez S, Khan MB, Awad ME, Wagner JD, Hess DC (August 2020). "Short-Term Acute Exercise Preconditioning Reduces Neurovascular Injury After Stroke Through Induced eNOS Activation". Translational Stroke Research. 11 (4): 851–860. doi:10.1007/s12975-019-00767-y. PMID 31858409. S2CID 255954922. /wiki/Doi_(identifier)
Sharp FR, Bernaudin M (June 2004). "HIF1 and oxygen sensing in the brain". Nature Reviews. Neuroscience. 5 (6): 437–448. doi:10.1038/nrn1408. PMID 15152194. S2CID 318020. /wiki/Doi_(identifier)
Dornbos D, Ding Y (February 2012). "Mechanisms of neuronal damage and neuroprotection underlying ischemia/reperfusion injury after physical exercise". Current Drug Targets. 13 (2): 247–262. doi:10.2174/138945012799201658. PMID 22204323. /wiki/Doi_(identifier)
Wang L, Deng W, Yuan Q, Yang H (March 2015). "Exercise preconditioning reduces ischemia reperfusion-induced focal cerebral infarct volume through up-regulating the expression of HIF-1α". Pakistan Journal of Pharmaceutical Sciences. 28 (2 Suppl): 791–798. PMID 25796156. https://pubmed.ncbi.nlm.nih.gov/25796156
Jia J, Hu YS, Wu Y, Liu G, Yu HX, Zheng QP, et al. (April 2009). "Pre-ischemic treadmill training affects glutamate and gamma aminobutyric acid levels in the striatal dialysate of a rat model of cerebral ischemia". Life Sciences. 84 (15–16): 505–511. doi:10.1016/j.lfs.2009.01.015. PMID 19302809. /wiki/Doi_(identifier)
Zhang F, Wu Y, Jia J, Hu YS (August 2010). "Pre-ischemic treadmill training induces tolerance to brain ischemia: involvement of glutamate and ERK1/2". Molecules. 15 (8): 5246–5257. doi:10.3390/molecules15085246. PMC 6257775. PMID 20714296. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6257775
Yang X, He Z, Zhang Q, Wu Y, Hu Y, Wang X, et al. (26 July 2012). "Pre-ischemic treadmill training for prevention of ischemic brain injury via regulation of glutamate and its transporter GLT-1". International Journal of Molecular Sciences. 13 (8): 9447–9459. doi:10.3390/ijms13089447. PMC 3431805. PMID 22949807. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431805
Aboutaleb N, Shamsaei N, Khaksari M, Erfani S, Rajabi H, Nikbakht F (September 2015). "Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation". The Journal of Physiological Sciences. 65 (5): 435–443. doi:10.1007/s12576-015-0382-7. PMC 10717499. PMID 26012958. S2CID 255606303. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717499
Viktorisson A, Buvarp D, Reinholdsson M, Danielsson A, Palstam A, Stibrant Sunnerhagen K (November 2022). "Associations of Prestroke Physical Activity With Stroke Severity and Mortality After Intracerebral Hemorrhage Compared With Ischemic Stroke". Neurology. 99 (19): e2137 – e2148. doi:10.1212/WNL.0000000000201097. PMC 9651453. PMID 36344278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651453
Viktorisson A, Buvarp D, Danielsson A, Skoglund T, Sunnerhagen KS (May 2023). "Prestroke physical activity is associated with admission haematoma volume and the clinical outcome of intracerebral haemorrhage". Stroke and Vascular Neurology. 8 (6): 511–520. doi:10.1136/svn-2023-002316. PMC 10800276. PMID 37137521. S2CID 258464205. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10800276
Kinoshita K, Hamanaka G, Ohtomo R, Takase H, Chung KK, Lok J, et al. (May 2021). "Mature Adult Mice With Exercise-Preconditioning Show Better Recovery After Intracerebral Hemorrhage". Stroke. 52 (5): 1861–1865. doi:10.1161/STROKEAHA.120.032201. PMC 8085050. PMID 33840224. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085050
McKevitt C, Fudge N, Redfern J, Sheldenkar A, Crichton S, Rudd AR, et al. (May 2011). "Self-reported long-term needs after stroke". Stroke. 42 (5): 1398–1403. doi:10.1161/STROKEAHA.110.598839. PMID 21441153. S2CID 33967186. /wiki/Doi_(identifier)
Buvarp D, Viktorisson A, Axelsson F, Lehto E, Lindgren L, Lundström E, Sunnerhagen KS (May 2023). "Physical Activity Trajectories and Functional Recovery After Acute Stroke Among Adults in Sweden". JAMA Network Open. 6 (5): e2310919. doi:10.1001/jamanetworkopen.2023.10919. PMC 10152305. PMID 37126346. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152305
Gunnes M, Indredavik B, Langhammer B, Lydersen S, Ihle-Hansen H, Dahl AE, Askim T (December 2019). "Associations Between Adherence to the Physical Activity and Exercise Program Applied in the LAST Study and Functional Recovery After Stroke". Archives of Physical Medicine and Rehabilitation. 100 (12): 2251–2259. doi:10.1016/j.apmr.2019.04.023. hdl:10642/8488. PMID 31374191. S2CID 199388335. /wiki/Doi_(identifier)
Petersen RC, Lopez O, Armstrong MJ, Getchius T, Ganguli M, Gloss D, Gronseth GS, Marson D, Pringsheim T, Day GS, Sager M, Stevens J, Rae-Grant A (January 2018). "Practice guideline update summary: Mild cognitive impairment – Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology". Neurology. Special article. 90 (3): 126–135. doi:10.1212/WNL.0000000000004826. PMC 5772157. PMID 29282327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772157
Petersen RC, Lopez O, Armstrong MJ, Getchius T, Ganguli M, Gloss D, Gronseth GS, Marson D, Pringsheim T, Day GS, Sager M, Stevens J, Rae-Grant A (January 2018). "Practice guideline update summary: Mild cognitive impairment – Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology". Neurology. Special article. 90 (3): 126–135. doi:10.1212/WNL.0000000000004826. PMC 5772157. PMID 29282327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772157
Farina N, Rusted J, Tabet N (January 2014). "The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review". Int Psychogeriatr. 26 (1): 9–18. doi:10.1017/S1041610213001385. PMID 23962667. S2CID 24936334. https://doi.org/10.1017%2FS1041610213001385
Farina N, Rusted J, Tabet N (January 2014). "The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review". Int Psychogeriatr. 26 (1): 9–18. doi:10.1017/S1041610213001385. PMID 23962667. S2CID 24936334. https://doi.org/10.1017%2FS1041610213001385
Blondell SJ, Hammersley-Mather R, Veerman JL (May 2014). "Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies". BMC Public Health. 14: 510. doi:10.1186/1471-2458-14-510. PMC 4064273. PMID 24885250. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064273
Fang X, Han D, Cheng Q, Zhang P, Zhao C, Min J, Wang F (September 2018). "Association of Levels of Physical Activity With Risk of Parkinson Disease: A Systematic Review and Meta-analysis". JAMA Network Open. 1 (5): e182421. doi:10.1001/jamanetworkopen.2018.2421. PMC 6324511. PMID 30646166. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324511
Mak MK, Wong-Yu IS, Shen X, Chung CL (November 2017). "Long-term effects of exercise and physical therapy in people with Parkinson disease". Nature Reviews Neurology. 13 (11): 689–703. doi:10.1038/nrneurol.2017.128. ISSN 1759-4766. PMID 29027544. S2CID 29666456. https://www.nature.com/articles/nrneurol.2017.128
Ernst M, Folkerts AK, Gollan R, et al. (5 January 2023). "Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis". The Cochrane Database of Systematic Reviews. 1 (1): CD013856. doi:10.1002/14651858.CD013856.pub2. ISSN 1469-493X. PMC 9815433. PMID 36602886. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815433
Ernst M, Folkerts AK, Gollan R, et al. (5 January 2023). "Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis". The Cochrane Database of Systematic Reviews. 1 (1): CD013856. doi:10.1002/14651858.CD013856.pub2. ISSN 1469-493X. PMC 9815433. PMID 36602886. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815433