Recently, 6PGD was demonstrated to catalyze also the reverse reaction (i.e. reductive carboxylation) in vivo.7 Experiments using Escherichia coli selection strains revealed that this reaction was efficient enough to support the formation of biomass based solely on CO2 and pentose sugars. In the future, this property could be exploited for synthetic carbon fixation routes.
Mutations within the gene coding this enzyme result in 6-phosphogluconate dehydrogenase deficiency, an autosomal hereditary disease affecting the red blood cells.
6PGD is involved in cancer cell metabolism so 6PGD inhibitors have been sought.8
Broedel SE, Wolf RE (July 1990). "Genetic tagging, cloning, and DNA sequence of the Synechococcus sp. strain PCC 7942 gene (gnd) encoding 6-phosphogluconate dehydrogenase". J. Bacteriol. 172 (7): 4023–31. doi:10.1128/jb.172.7.4023-4031.1990. PMC 213388. PMID 2113917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC213388 ↩
Adams MJ, Archibald IG, Bugg CE, Carne A, Gover S, Helliwell JR, Pickersgill RW, White SW (1983). "The three dimensional structure of sheep liver 6-phosphogluconate dehydrogenase at 2.6 A resolution". EMBO J. 2 (6): 1009–14. doi:10.1002/j.1460-2075.1983.tb01535.x. PMC 555222. PMID 6641716. /wiki/John_R._Helliwell ↩
Reizer A, Deutscher J, Saier MH, Reizer J (May 1991). "Analysis of the gluconate (gnt) operon of Bacillus subtilis". Mol. Microbiol. 5 (5): 1081–9. doi:10.1111/j.1365-2958.1991.tb01880.x. PMID 1659648. S2CID 2006623. /wiki/Doi_(identifier) ↩
Satanowski A, Dronsella B, Noor E, Vögeli B, He H, Wichmann P, et al. (November 2020). "Awakening a latent carbon fixation cycle in Escherichia coli". Nature Communications. 11 (1): 5812. Bibcode:2020NatCo..11.5812S. doi:10.1038/s41467-020-19564-5. PMC 7669889. PMID 33199707. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669889 ↩
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1–AMPK signalling. 2015 http://www.nature.com/ncb/journal/v17/n11/full/ncb3255.html ↩