Careful experiments have shown that the inertial mass on the left side and gravitational mass on the right side are numerically equal and independent of the material composing the masses. The equivalence principle is the hypothesis that this numerical equality of inertial and gravitational mass is a consequence of their fundamental identity.: 32
The equivalence principle can be considered an extension of the principle of relativity, the principle that the laws of physics are invariant under uniform motion. An observer in a windowless room cannot distinguish between being on the surface of the Earth and being in a spaceship in deep space accelerating at 1g and the laws of physics are unable to distinguish these cases.: 33
Newton, just 50 years after Galileo, investigated whether gravitational and inertial mass might be different concepts. He compared the periods of pendulums composed of different materials and found them to be identical. From this, he inferred that gravitational and inertial mass are the same thing. The form of this assertion, where the equivalence principle is taken to follow from empirical consistency, later became known as "weak equivalence".
A version of the equivalence principle consistent with special relativity was introduced by Albert Einstein in 1907, when he observed that identical physical laws are observed in two systems, one subject to a constant gravitational field causing acceleration and the other subject to constant acceleration, like a rocket far from any gravitational field.: 152 Since the physical laws are the same, Einstein assumed the gravitational field and the acceleration were "physically equivalent". Einstein stated this hypothesis by saying he would:
In 1911 Einstein demonstrated the power of the equivalence principle by using it to predict that clocks run at different rates in a gravitational potential, and light rays bend in a gravitational field.: 153 He connected the equivalence principle to his earlier principle of special relativity:
Einstein's development of general relativity necessitated some means of empirically discriminating the theory from other theories of gravity compatible with special relativity. Accordingly, Robert Dicke developed a test program incorporating two new principles – the § Einstein equivalence principle, and the § Strong equivalence principle – each of which assumes the weak equivalence principle as a starting point.
Three main forms of the equivalence principle are in current use: weak (Galilean), Einsteinian, and strong.: 6 Some proposals also suggest finer divisions or minor alterations.
The weak equivalence principle, also known as the universality of free fall or the Galilean equivalence principle can be stated in many ways. The strong equivalence principle, a generalization of the weak equivalence principle, includes astronomic bodies with gravitational self-binding energy. Instead, the weak equivalence principle assumes falling bodies are self-bound by non-gravitational forces only (e.g. a stone). Either way:
Uniformity of the gravitational field eliminates measurable tidal forces originating from a radial divergent gravitational field (e.g., the Earth) upon finite sized physical bodies.
What is now called the "Einstein equivalence principle" states that the weak equivalence principle holds, and that:
The two additional constraints added to the weak principle to get the Einstein form − (1) the independence of the outcome on relative velocity (local Lorentz invariance) and (2) independence of "where" (known as local positional invariance) − have far reaching consequences. With these constraints alone Einstein was able to predict the gravitational redshift. Theories of gravity that obey the Einstein equivalence principle must be "metric theories", meaning that trajectories of freely falling bodies are geodesics of symmetric metric.: 9
The Einstein equivalence principle has been criticized as imprecise, because there is no universally accepted way to distinguish gravitational from non-gravitational experiments (see for instance Hadley and Durand).
The strong equivalence principle applies the same constraints as the Einstein equivalence principle, but allows the freely falling bodies to be massive gravitating objects as well as test particles.
Thus this is a version of the equivalence principle that applies to objects that exert a gravitational force on themselves, such as stars, planets, black holes or Cavendish experiments. It requires that the gravitational constant be the same everywhere in the universe: 49 and is incompatible with a fifth force. It is much more restrictive than the Einstein equivalence principle.
Like the Einstein equivalence principle, the strong equivalence principle requires gravity to be geometrical by nature, but in addition it forbids any extra fields, so the metric alone determines all of the effects of gravity. If an observer measures a patch of space to be flat, then the strong equivalence principle suggests that it is absolutely equivalent to any other patch of flat space elsewhere in the universe. Einstein's theory of general relativity (including the cosmological constant) is thought to be the only theory of gravity that satisfies the strong equivalence principle. A number of alternative theories, such as Brans–Dicke theory and the Einstein-aether theory add additional fields.
Some of the tests of the equivalence principle use names for the different ways mass appears in physical formulae. In nonrelativistic physics three kinds of mass can be distinguished:
By definition of active and passive gravitational mass, the force on
M
1
{\displaystyle M_{1}}
due to the gravitational field of
M
0
{\displaystyle M_{0}}
is:
F
1
=
M
0
a
c
t
M
1
p
a
s
s
r
2
{\displaystyle F_{1}={\frac {M_{0}^{\mathrm {act} }M_{1}^{\mathrm {pass} }}{r^{2}}}}
Likewise the force on a second object of arbitrary mass2 due to the gravitational field of mass0 is:
F
2
=
M
0
a
c
t
M
2
p
a
s
s
r
2
{\displaystyle F_{2}={\frac {M_{0}^{\mathrm {act} }M_{2}^{\mathrm {pass} }}{r^{2}}}}
By definition of inertial mass:
F
=
m
i
n
e
r
t
a
{\displaystyle F=m^{\mathrm {inert} }a}
if
m
1
{\displaystyle m_{1}}
and
m
2
{\displaystyle m_{2}}
are the same distance
r
{\displaystyle r}
from
m
0
{\displaystyle m_{0}}
then, by the weak equivalence principle, they fall at the same rate (i.e. their accelerations are the same).
a
1
=
F
1
m
1
i
n
e
r
t
=
a
2
=
F
2
m
2
i
n
e
r
t
{\displaystyle a_{1}={\frac {F_{1}}{m_{1}^{\mathrm {inert} }}}=a_{2}={\frac {F_{2}}{m_{2}^{\mathrm {inert} }}}}
Hence:
M
0
a
c
t
M
1
p
a
s
s
r
2
m
1
i
n
e
r
t
=
M
0
a
c
t
M
2
p
a
s
s
r
2
m
2
i
n
e
r
t
{\displaystyle {\frac {M_{0}^{\mathrm {act} }M_{1}^{\mathrm {pass} }}{r^{2}m_{1}^{\mathrm {inert} }}}={\frac {M_{0}^{\mathrm {act} }M_{2}^{\mathrm {pass} }}{r^{2}m_{2}^{\mathrm {inert} }}}}
Therefore:
M
1
p
a
s
s
m
1
i
n
e
r
t
=
M
2
p
a
s
s
m
2
i
n
e
r
t
{\displaystyle {\frac {M_{1}^{\mathrm {pass} }}{m_{1}^{\mathrm {inert} }}}={\frac {M_{2}^{\mathrm {pass} }}{m_{2}^{\mathrm {inert} }}}}
In other words, passive gravitational mass must be proportional to inertial mass for objects, independent of their material composition if the weak equivalence principle is obeyed.
It follows that:
M
0
a
c
t
M
0
p
a
s
s
=
M
1
a
c
t
M
1
p
a
s
s
{\displaystyle {\frac {M_{0}^{\mathrm {act} }}{M_{0}^{\mathrm {pass} }}}={\frac {M_{1}^{\mathrm {act} }}{M_{1}^{\mathrm {pass} }}}}
In words, passive gravitational mass must be proportional to active gravitational mass for all objects. The difference,
S
0
,
1
=
M
0
a
c
t
M
0
p
a
s
s
−
M
1
a
c
t
M
1
p
a
s
s
{\displaystyle S_{0,1}={\frac {M_{0}^{\mathrm {act} }}{M_{0}^{\mathrm {pass} }}}-{\frac {M_{1}^{\mathrm {act} }}{M_{1}^{\mathrm {pass} }}}}
is used to quantify differences between passive and active mass.
Tests of the weak equivalence principle are those that verify the equivalence of gravitational mass and inertial mass. An obvious test is dropping different objects and verifying that they land at the same time. Historically this was the first approach – though probably not by Galileo's Leaning Tower of Pisa experiment: 19–21 but instead earlier by Simon Stevin, who dropped lead balls of different masses off the Delft churchtower and listened for the sound of them hitting a wooden plank.
With the first successful production of antimatter, in particular anti-hydrogen, a new approach to test the weak equivalence principle has been proposed. Experiments to compare the gravitational behavior of matter and antimatter are currently being developed.
Currently envisioned tests of the weak equivalence principle are approaching a degree of sensitivity such that non-discovery of a violation would be just as profound a result as discovery of a violation. Non-discovery of equivalence principle violation in this range would suggest that gravity is so fundamentally different from other forces as to require a major reevaluation of current attempts to unify gravity with the other forces of nature. A positive detection, on the other hand, would provide a major guidepost towards unification.
In addition to the tests of the weak equivalence principle, the Einstein equivalence principle requires testing the local Lorentz invariance and local positional invariance conditions.
Testing local Lorentz invariance amounts to testing special relativity, a theory with vast number of existing tests.: 12 Nevertheless, attempts to look for quantum gravity require even more precise tests. The modern tests include looking for directional variations in the speed of light (called "clock anisotropy tests") and new forms of the Michelson–Morley experiment. The anisotropy measures less than one part in 10−20.: 14
Testing local positional invariance divides in to tests in space and in time.: 17 Space-based tests use measurements of the gravitational redshift, the classic is the Pound–Rebka experiment in the 1960s. The most precise measurement was done in 1976 by flying a hydrogen maser and comparing it to one on the ground. The Global Positioning System requires compensation for this redshift to give accurate position values.
The present best limits on the variation of the fundamental constants have mainly been set by studying the naturally occurring Oklo natural nuclear fission reactor, where nuclear reactions similar to ones we observe today have been shown to have occurred underground approximately two billion years ago. These reactions are extremely sensitive to the values of the fundamental constants.
Tests of changes in fundamental constants: 19 The strong equivalence principle can be tested by 1) finding orbital variations in massive bodies (Sun-Earth-Moon), 2) variations in the gravitational constant (G) depending on nearby sources of gravity or on motion, or 3) searching for a variation of Newton's gravitational constant over the life of the universe: 47
Orbital variations due to gravitational self-energy should cause a "polarization" of solar system orbits called the Nordtvedt effect. This effect has been sensitively tested by Lunar Laser Ranging experiments. Up to the limit of one part in 1013 there is no Nordtvedt effect.
A tight bound on the effect of nearby gravitational fields on the strong equivalence principle comes from modeling the orbits of binary stars and comparing the results to pulsar timing data.: 49 In 2014, astronomers discovered a stellar triple system containing a millisecond pulsar PSR J0337+1715 and two white dwarfs orbiting it. The system provided them a chance to test the strong equivalence principle in a strong gravitational field with high accuracy. If there is any departure from the strong equivalence principle, it is no more than two parts per million.
Most alternative theories of gravity predict a change in the gravity constant over time. Studies of Big Bang nucleosynthesis, analysis of pulsars, and the lunar laser ranging data have shown that G cannot have varied by more than 10% since the creation of the universe. The best data comes from studies of the ephemeris of Mars, based on three successive NASA missions, Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter.: 50
Einstein, Albert (2003). The Meaning of Relativity. Routledge. p. 59. ISBN 9781134449798. 9781134449798
Einstein, Albert (2003). The Meaning of Relativity. Routledge. p. 59. ISBN 9781134449798. 9781134449798
Everitt, C.W.F.; Damour, T.; Nordtvedt, K.; Reinhard, R. (October 2003). "Historical perspective on testing the Equivalence Principle". Advances in Space Research. 32 (7): 1297–1300. Bibcode:2003AdSpR..32.1297E. doi:10.1016/S0273-1177(03)90335-8. https://linkinghub.elsevier.com/retrieve/pii/S0273117703903358
Everitt, C.W.F.; Damour, T.; Nordtvedt, K.; Reinhard, R. (October 2003). "Historical perspective on testing the Equivalence Principle". Advances in Space Research. 32 (7): 1297–1300. Bibcode:2003AdSpR..32.1297E. doi:10.1016/S0273-1177(03)90335-8. https://linkinghub.elsevier.com/retrieve/pii/S0273117703903358
Whittaker, Sir Edmund (1 January 1989). A History of the Theories of Aether and Electricity. Vol. 2. Courier Dover Publications. ISBN 0-486-26126-3. 0-486-26126-3
Einstein, Albert. "On the relativity principle and the conclusions drawn from it." Jahrb Radioaktivitat Elektronik 4 (1907): 411–462.
Whittaker, Sir Edmund (1 January 1989). A History of the Theories of Aether and Electricity. Vol. 2. Courier Dover Publications. ISBN 0-486-26126-3. 0-486-26126-3
Einstein, Albert. "On the Influence of Gravitation on the Propagation of Light." Annalen der Physik 35.898–908 (1911): 906.
Lorentz, Hendrik Antoon, et al. The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. United Kingdom, Dover Publications, 1923. https://books.google.com/books?id=oy_Z3o7p6zwC
Einstein, Albert, How I Constructed the Theory of Relativity, translated by Masahiro Morikawa from the text recorded in Japanese by Jun Ishiwara, Association of Asia Pacific Physical Societies (AAPPS) Bulletin, Vol. 15, No. 2, pp. 17–19, April 2005. Einstein recalls events of 1907 in a talk in Japan on 14 December 1922. https://web.archive.org/web/20151222085312/http://inpac.ucsd.edu/students/courses/winter2012/physics2d/einsteinonrelativity.pdf
Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified gravity and cosmology". Physics Reports. 513 (1–3): 1–189. arXiv:1106.2476. Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001. https://linkinghub.elsevier.com/retrieve/pii/S0370157312000105
Di Casola, Eolo; Liberati, Stefano; Sonego, Sebastiano (1 January 2015). "Nonequivalence of equivalence principles". American Journal of Physics. 83 (1): 39–46. arXiv:1310.7426. Bibcode:2015AmJPh..83...39D. doi:10.1119/1.4895342. ISSN 0002-9505. S2CID 119110646. We have seen that the various formulations of the equivalence principle form hierarchy (or rather, a nested sequence of statements narrowing down the type of gravitational theory), https://pubs.aip.org/ajp/article/83/1/39/1042100/Nonequivalence-of-equivalence-principles
Ghins, Michel; Budden, Tim (March 2001). "The Principle of Equivalence". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 32 (1): 33–51. Bibcode:2001SHPMP..32...33G. doi:10.1016/S1355-2198(00)00038-1. https://linkinghub.elsevier.com/retrieve/pii/S1355219800000381
Wagner, Todd A.; Schlamminger, Stephan; Gundlach, Jens H.; Adelberger, Eric G. (2012). "Torsion-balance tests of the weak equivalence principle". Classical and Quantum Gravity. 29 (18): 184002. arXiv:1207.2442. Bibcode:2012CQGra..29r4002W. doi:10.1088/0264-9381/29/18/184002. S2CID 59141292. /wiki/ArXiv_(identifier)
Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified gravity and cosmology". Physics Reports. 513 (1–3): 1–189. arXiv:1106.2476. Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001. https://linkinghub.elsevier.com/retrieve/pii/S0370157312000105
Wagner, Todd A.; Schlamminger, Stephan; Gundlach, Jens H.; Adelberger, Eric G. (2012). "Torsion-balance tests of the weak equivalence principle". Classical and Quantum Gravity. 29 (18): 184002. arXiv:1207.2442. Bibcode:2012CQGra..29r4002W. doi:10.1088/0264-9381/29/18/184002. S2CID 59141292. /wiki/ArXiv_(identifier)
Wesson, Paul S. (2006). Five-dimensional Physics. World Scientific. p. 82. ISBN 978-981-256-661-4. 978-981-256-661-4
Haugen, Mark P.; Lämmerzahl, Claus (2001). "Principles of Equivalence: Their Role in Gravitation Physics and Experiments That Test Them.". Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space. Lecture Notes in Physics. Vol. 562. pp. 195–212. arXiv:gr-qc/0103067. Bibcode:2001LNP...562..195H. doi:10.1007/3-540-40988-2_10. ISBN 978-3-540-41236-6. S2CID 15430387. {{cite book}}: |journal= ignored (help) 978-3-540-41236-6
Haugen, Mark P.; Lämmerzahl, Claus (2001). "Principles of Equivalence: Their Role in Gravitation Physics and Experiments That Test Them.". Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space. Lecture Notes in Physics. Vol. 562. pp. 195–212. arXiv:gr-qc/0103067. Bibcode:2001LNP...562..195H. doi:10.1007/3-540-40988-2_10. ISBN 978-3-540-41236-6. S2CID 15430387. {{cite book}}: |journal= ignored (help) 978-3-540-41236-6
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Hadley, Mark J. (1997). "The Logic of Quantum Mechanics Derived from Classical General Relativity". Foundations of Physics Letters. 10 (1): 43–60. arXiv:quant-ph/9706018. Bibcode:1997FoPhL..10...43H. CiteSeerX 10.1.1.252.6335. doi:10.1007/BF02764119. S2CID 15007947. /wiki/ArXiv_(identifier)
Durand, Stéphane (2002). "An amusing analogy: modelling quantum-type behaviours with wormhole-based time travel". Journal of Optics B: Quantum and Semiclassical Optics. 4 (4): S351 – S357. Bibcode:2002JOptB...4S.351D. doi:10.1088/1464-4266/4/4/319. http://stacks.iop.org/ob/4/S351
Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified gravity and cosmology". Physics Reports. 513 (1–3): 1–189. arXiv:1106.2476. Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001. https://linkinghub.elsevier.com/retrieve/pii/S0370157312000105
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified gravity and cosmology". Physics Reports. 513 (1–3): 1–189. arXiv:1106.2476. Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001. https://linkinghub.elsevier.com/retrieve/pii/S0370157312000105
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Singh, Vishwa Vijay; Müller, Jürgen; Biskupek, Liliane; Hackmann, Eva; Lämmerzahl, Claus (13 July 2023). "Equivalence of Active and Passive Gravitational Mass Tested with Lunar Laser Ranging". Physical Review Letters. 131 (2): 021401. arXiv:2212.09407. Bibcode:2023PhRvL.131b1401S. doi:10.1103/PhysRevLett.131.021401. ISSN 0031-9007. PMID 37505941. https://link.aps.org/doi/10.1103/PhysRevLett.131.021401
Drake, Stillman (2003). Galileo at Work: His Scientific Biography (Facsim. ed.). Mineola (N.Y.): Dover publ. ISBN 9780486495422. 9780486495422
Devreese, Jozef T.; Vanden Berghe, Guido (2008). 'Magic Is No Magic': The Wonderful World of Simon Stevin. WIT Press. p. 154. ISBN 9781845643911. 9781845643911
Everitt, C.W.F.; Damour, T.; Nordtvedt, K.; Reinhard, R. (October 2003). "Historical perspective on testing the Equivalence Principle". Advances in Space Research. 32 (7): 1297–1300. Bibcode:2003AdSpR..32.1297E. doi:10.1016/S0273-1177(03)90335-8. https://linkinghub.elsevier.com/retrieve/pii/S0273117703903358
"Weak Equivalence Principle test on the moon". YouTube. 18 May 2007. Archived from the original on 21 December 2021. https://www.youtube.com/watch?v=MJyUDpm9Kvk
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Philoponus, John; "Corollaries on Place and Void", translated by David Furley, Ithaca, New York: Cornell University Press, 1987
Stevin, Simon; De Beghinselen der Weeghconst ["Principles of the Art of Weighing"], Leyden, 1586; Dijksterhuis, Eduard J.; "The Principal Works of Simon Stevin", Amsterdam, 1955
Devreese, Jozef T.; Vanden Berghe, Guido (2008). 'Magic Is No Magic': The Wonderful World of Simon Stevin. WIT Press. p. 154. ISBN 9781845643911. 9781845643911
Galilei, Galileo; "Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze", Leida: Appresso gli Elsevirii, 1638; "Discourses and Mathematical Demonstrations Concerning Two New Sciences", Leiden: Elsevier Press, 1638
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Newton, Isaac; "Philosophiae Naturalis Principia Mathematica" [Mathematical Principles of Natural Philosophy and his System of the World], translated by Andrew Motte, revised by Florian Cajori, Berkeley, California: University of California Press, 1934; Newton, Isaac; "The Principia: Mathematical Principles of Natural Philosophy", translated by I. Bernard Cohen and Anne Whitman, with the assistance of Julia Budenz, Berkeley, California: University of California Press, 1999
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Bessel, Friedrich W.; "Versuche Uber die Kraft, mit welcher die Erde Körper von verschiedner Beschaffenhelt anzieht", Annalen der Physik und Chemie, Berlin: J. Ch. Poggendorff, 25 401–408 (1832)
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
R. v. Eötvös 1890 Mathematische und Naturwissenschaftliche Berichte aus Ungarn, 8, 65; Annalen der Physik (Leipzig) 68 11 (1922); Smith, G. L.; Hoyle, C. D.; Gundlach, J. H.; Adelberger, E. G.; Heckel, B. R.; Swanson, H. E. (1999). "Short-range tests of the equivalence principle". Physical Review D. 61 (2): 022001. arXiv:2405.10982. Bibcode:1999PhRvD..61b2001S. doi:10.1103/PhysRevD.61.022001. https://archive.org/details/mathematischeund818891890magy
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Southerns, Leonard (1910). "A Determination of the Ratio of Mass to Weight for a Radioactive Substance". Proceedings of the Royal Society of London. 84 (571): 325–344. Bibcode:1910RSPSA..84..325S. doi:10.1098/rspa.1910.0078. https://doi.org/10.1098%2Frspa.1910.0078
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Zeeman, Pieter (1918) "Some experiments on gravitation: The ratio of mass to weight for crystals and radioactive substances", Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam 20(4) 542–553
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Potter, Harold H. (1923). "Some Experiments on the Proportionality of Mass and Weight". Proceedings of the Royal Society of London. 104 (728): 588–610. Bibcode:1923RSPSA.104..588P. doi:10.1098/rspa.1923.0130. https://doi.org/10.1098%2Frspa.1923.0130
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Renner, János (1935). "Kísérleti vizsgálatok a tömegvonzás és tehetetlenség arányosságáról". Mathematikai és Természettudományi Értesítő. 53: 569.
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Roll, Peter G.; Krotkov, Robert; Dicke, Robert H.; The equivalence of inertial and passive gravitational mass, Annals of Physics, Volume 26, Issue 3, 20 February 1964, pp. 442–517
Braginski, Vladimir Borisovich; Panov, Vladimir Ivanovich (1971). "Журнал Экспериментальной и Теоретической Физики". (Zhurnal Éksperimental'noĭ I Teoreticheskoĭ Fiziki, Journal of Experimental and Theoretical Physics). 61: 873.
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Shapiro, Irwin I.; Counselman, III; Charles, C.; King, Robert W. (1976). "Verification of the principle of equivalence for massive bodies". Physical Review Letters. 36 (11): 555–558. Bibcode:1976PhRvL..36..555S. doi:10.1103/physrevlett.36.555. Archived from the original on 22 January 2014. https://archive.today/20140122182435/http://prl.aps.org/pdf/PRL/v36/i11/p555_1
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Keiser, George M.; Faller, James E. (1979). "New approach to the Eötvös experiment". Bulletin of the American Physical Society. 24: 579.
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Niebauer, Timothy M.; McHugh, Martin P.; Faller, James E. (1987). "Galilean test for the fifth force". Physical Review Letters (Submitted manuscript). 59 (6): 609–612. Bibcode:1987PhRvL..59..609N. doi:10.1103/physrevlett.59.609. PMID 10035824. https://zenodo.org/record/1233860
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Stubbs, Christopher W.; Adelberger, Eric G.; Heckel, Blayne R.; Rogers, Warren F.; Swanson, H. Erik; Watanabe, R.; Gundlach, Jens H.; Raab, Frederick J. (1989). "Limits on Composition-Dependent Interactions Using a Laboratory Source: Is There a "Fifth Force" Coupled to Isospin?". Physical Review Letters. 62 (6): 609–612. Bibcode:1989PhRvL..62..609S. doi:10.1103/physrevlett.62.609. PMID 10040283. /wiki/Bibcode_(identifier)
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Adelberger, Eric G.; Stubbs, Christopher W.; Heckel, Blayne R.; Su, Y.; Swanson, H. Erik; Smith, G. L.; Gundlach, Jens H.; Rogers, Warren F. (1990). "Testing the equivalence principle in the field of the Earth: Particle physics at masses below 1 μeV?". Physical Review D. 42 (10): 3267–3292. Bibcode:1990PhRvD..42.3267A. doi:10.1103/physrevd.42.3267. PMID 10012726. /wiki/Bibcode_(identifier)
Ciufolini, Ignazio; Wheeler, John A.; Gravitation and Inertia, Princeton, New Jersey: Princeton University Press, 1995, pp. 117–119
Baeßler, Stefan; et al. (2001). "Remarks by Heinrich Hertz (1857–94) on the equivalence principle". Classical and Quantum Gravity. 18 (13): 2393. Bibcode:2001CQGra..18.2393B. doi:10.1088/0264-9381/18/13/301. S2CID 250758089. /wiki/Bibcode_(identifier)
Baeßler, Stefan; Heckel, Blayne R.; Adelberger, Eric G.; Gundlach, Jens H.; Schmidt, Ulrich; Swanson, H. Erik (1999). "Improved Test of the Equivalence Principle for Gravitational Self-Energy". Physical Review Letters. 83 (18): 3585. Bibcode:1999PhRvL..83.3585B. doi:10.1103/physrevlett.83.3585. /wiki/Bibcode_(identifier)
Schlamminger, Stephan; Choi, Ki-Young; Wagner, Todd A.; Gundlach, Jens H.; Adelberger, Eric G. (2008). "Test of the Equivalence Principle Using a Rotating Torsion Balance". Physical Review Letters. 100 (4): 041101. arXiv:0712.0607. Bibcode:2008PhRvL.100d1101S. doi:10.1103/PhysRevLett.100.041101. PMID 18352252. S2CID 18653407. /wiki/ArXiv_(identifier)
Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; André, Yves; Baghi, Quentin; Bergé, Joël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice; Chhun, Ratana; Christophe, Bruno; Cipolla, Valerio; Damour, Thibault; Danto, Pascale; Dittus, Hansjoerg; Fayet, Pierre; Foulon, Bernard; Gageant, Claude; Guidotti, Pierre-Yves; Hagedorn, Daniel; Hardy, Emilie; Huynh, Phuong-Anh; Inchauspe, Henri; Kayser, Patrick; Lala, Stéphanie; Lämmerzahl, Claus; Lebat, Vincent; Leseur, Pierre; Liorzou, Françoise; et al. (2017). "MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle". Physical Review Letters. 119 (23): 231101. arXiv:1712.01176. Bibcode:2017PhRvL.119w1101T. doi:10.1103/PhysRevLett.119.231101. PMID 29286705. S2CID 6211162. /wiki/ArXiv_(identifier)
Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; Bergé, Joel; Robert, Alain; Baghi, Quentin; André, Yves; Bedouet, Judicaël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice (2022). "MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle". Physical Review Letters. 129 (12): 121102. arXiv:2209.15487. Bibcode:2022PhRvL.129l1102T. doi:10.1103/PhysRevLett.129.121102. PMID 36179190. S2CID 252468544. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.121102
"The Eöt-Wash Group | Laboratory Tests of Gravitational and sub-Gravitational Physics". www.npl.washington.edu. http://www.npl.washington.edu/eotwash/
Dittus, Hansjörg; Lāmmerzahl, Claus (2005). Experimental Tests of the Equivalence Principle and Newton's Law in Space (PDF). Gravitation and Cosmology: 2nd Mexican Meeting on Mathematical and Experimental Physics, AIP Conference Proceedings. Vol. 758. p. 95. Bibcode:2005AIPC..758...95D. doi:10.1063/1.1900510. Archived from the original (PDF) on 17 December 2008. https://web.archive.org/web/20081217040845/http://www.zarm.uni-bremen.de/2forschung/gravi/publications/papers/2005DittusLaemmerzahl.pdf
"S T e P". http://einstein.stanford.edu/STEP/
""GALILEO GALILEI" GG Small Mission Project". http://eotvos.dm.unipi.it/nobili/
Kimura, M.; Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Derking, H.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Ferragut, R.; Fontana, A.; Gerber, S.; Giammarchi, M.; et al. (2015). "Testing the Weak Equivalence Principle with an antimatter beam at CERN". Journal of Physics: Conference Series. 631 (1): 012047. Bibcode:2015JPhCS.631a2047K. doi:10.1088/1742-6596/631/1/012047. hdl:2434/457743. http://stacks.iop.org/1742-6596/631/i=1/a=012047
Overduin, James; Everitt, Francis; Mester, John; Worden, Paul (2009). "The Science Case for STEP". Advances in Space Research. 43 (10): 1532–1537. arXiv:0902.2247. Bibcode:2009AdSpR..43.1532O. doi:10.1016/j.asr.2009.02.012. S2CID 8019480. /wiki/ArXiv_(identifier)
Overduin, James; Everitt, Francis; Mester, John; Worden, Paul (2009). "The Science Case for STEP". Advances in Space Research. 43 (10): 1532–1537. arXiv:0902.2247. Bibcode:2009AdSpR..43.1532O. doi:10.1016/j.asr.2009.02.012. S2CID 8019480. /wiki/ArXiv_(identifier)
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Uzan, Jean-Philippe (7 April 2003). "The fundamental constants and their variation: observational and theoretical status". Reviews of Modern Physics. 75 (2): 403–455. arXiv:hep-ph/0205340. Bibcode:2003RvMP...75..403U. doi:10.1103/RevModPhys.75.403. ISSN 0034-6861. S2CID 118684485. https://link.aps.org/doi/10.1103/RevModPhys.75.403
Webb, John K.; Murphy, Michael T.; Flambaum, Victor V.; Dzuba, Vladimir A.; Barrow, John D.; Churchill, Chris W.; Prochaska, Jason X.; Wolfe, Arthur M. (2001). "Further Evidence for Cosmological Evolution of the Fine Structure Constant". Physical Review Letters. 87 (9): 091301. arXiv:astro-ph/0012539. Bibcode:2001PhRvL..87i1301W. doi:10.1103/PhysRevLett.87.091301. PMID 11531558. S2CID 40461557. /wiki/ArXiv_(identifier)
Rocha, G; Trotta, R; Martins, C.J.A.P; Melchiorri, A; Avelino, P.P; Viana, P.T.P (November 2003). "New constraints on varying α". New Astronomy Reviews. 47 (8–10): 863–869. arXiv:astro-ph/0309205. Bibcode:2003NewAR..47..863R. doi:10.1016/j.newar.2003.07.018. S2CID 9280269. https://linkinghub.elsevier.com/retrieve/pii/S1387647303001532
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
"Fundamental Physics of Space – Technical Details". Archived from the original on 28 November 2016. Retrieved 7 May 2005. https://web.archive.org/web/20161128185551/http://funphysics.jpl.nasa.gov/technical/grp/lunar-laser.html
Viswanathan, V; Fienga, A; Minazzoli, O; Bernus, L; Laskar, J; Gastineau, M (May 2018). "The new lunar ephemeris INPOP17a and its application to fundamental physics". Monthly Notices of the Royal Astronomical Society. 476 (2): 1877–1888. arXiv:1710.09167. Bibcode:2018MNRAS.476.1877V. doi:10.1093/mnras/sty096. S2CID 119454879. https://doi.org/10.1093%2Fmnras%2Fsty096
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900
Ransom, Scott M.; et al. (2014). "A millisecond pulsar in a stellar triple system". Nature. 505 (7484): 520–524. arXiv:1401.0535. Bibcode:2014Natur.505..520R. doi:10.1038/nature12917. PMID 24390352. S2CID 4468698. http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12917.html#ref7
Anne M. Archibald; et al. (4 July 2018). "Universality of free fall from the orbital motion of a pulsar in a stellar triple system". Nature. 559 (7712): 73–76. arXiv:1807.02059. Bibcode:2018Natur.559...73A. doi:10.1038/s41586-018-0265-1. PMID 29973733. S2CID 49578025. /wiki/Anne_Archibald
"Even Phenomenally Dense Neutron Stars Fall like a Feather – Einstein Gets It Right Again". Charles Blue, Paul Vosteen. NRAO. 4 July 2018. https://public.nrao.edu/news/neutron-stars-fall/
Voisin, G.; Cognard, I.; Freire, P. C. C.; Wex, N.; Guillemot, L.; Desvignes, G.; Kramer, M.; Theureau, G. (1 June 2020). "An improved test of the strong equivalence principle with the pulsar in a triple star system". Astronomy & Astrophysics. 638: A24. arXiv:2005.01388. Bibcode:2020A&A...638A..24V. doi:10.1051/0004-6361/202038104. ISSN 0004-6361. S2CID 218486794. https://www.aanda.org/articles/aa/abs/2020/06/aa38104-20/aa38104-20.html
Will, Clifford M. (December 2014). "The Confrontation between General Relativity and Experiment". Living Reviews in Relativity. 17 (1): 4. arXiv:1403.7377. Bibcode:2014LRR....17....4W. doi:10.12942/lrr-2014-4. ISSN 2367-3613. PMC 5255900. PMID 28179848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255900