A comprehensive set of analyses of wood ash composition from many tree species has been carried out by Emil Wolff, among others. Several factors have a major impact on the composition:
The burning of wood results in about 6–10% ashes on average. The residue ash of 0.43 and 1.82 percent of the original mass of burned wood (assuming dry basis, meaning that H2O is driven off) is produced for certain woods if it is pyrolized until all volatiles disappear and it is burned at 350 °C (662 °F) for 8 hours. Also the conditions of the combustion affect the composition and amount of the residue ash, thus higher temperature will reduce the ash yield.
As the wood burns, it produces different compounds depending on the temperature used. Some studies cite calcium carbonate (CaCO3) as the major constituent, others find no carbonate at all but calcium oxide (CaO) instead. The latter is produced at higher temperatures (see calcination). The equilibrium reaction CaCO3 → CO2 + CaO has its equilibrium shifted leftward at 750 °C (1,380 °F) and high CO2 partial pressure (such as in a wood fire) but shifted rightward at 900 °C (1,650 °F) or when CO2 partial pressure is reduced.
One study has determined that a slowly burning wood (100–200 °C (212–392 °F) ) emissions typically include 16 alkenes, 5 alkadienes, 5 alkynes and several alkanes and arenes in proportions. Ethene, acetylene and benzene were a major part at efficient combustion. Proportion of C3-C7 alkenes were found to be higher for smouldering. Benzene and 1,3-butadiene constituted ~10–20% and ~1–2% by mass of total non-methane hydrocarbons.
For thousands of years, plant or wood ash was leached with water, to yield an impure solution of potassium carbonate. This product could be mixed with oils or fats to produce a soft "soap" or soap like-product, as was done in ancient Sumeria, Europe, and Egypt. However only certain types of plants could produce a soap that actually lathered. Later, medieval European soapmakers treated the wood ash solution with slaked lime, which contains calcium hydroxide, to get a hydroxide-rich solution for soapmaking. However it was not until the invention of the Leblanc process that high quality sodium hydroxide could be mass produced, rendering obsolete the earlier forms of soap using crude wood or plant ash. This was a revolutionary discovery that facilitated the modern soapmaking industry.
Wolff, Emil (1871). Aschen-Analysen. Berlin: Wiegandt und Hempel. https://archive.org/details/aschenanalysenv01wolfgoog
Siddique, Rafat (2008), "Wood Ash", Waste Materials and By-Products in Concrete, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 303–321, doi:10.1007/978-3-540-74294-4_9, ISBN 978-3-540-74293-7, retrieved 24 July 2022 978-3-540-74293-7
Misra MK, Ragland KW, Baker AJ (1993). "Wood Ash Composition as a Function of Furnace Temperature" (PDF). Biomass and Bioenergy. 4 (2): 103–116. doi:10.1016/0961-9534(93)90032-Y. http://www.fpl.fs.fed.us/documnts/pdf1993/misra93a.pdf
Siddique, Rafat (2008), "Wood Ash", Waste Materials and By-Products in Concrete, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 303–321, doi:10.1007/978-3-540-74294-4_9, ISBN 978-3-540-74293-7, retrieved 24 July 2022 978-3-540-74293-7
Siddique, Rafat (2008), "Wood Ash", Waste Materials and By-Products in Concrete, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 303–321, doi:10.1007/978-3-540-74294-4_9, ISBN 978-3-540-74293-7, retrieved 24 July 2022 978-3-540-74293-7
Siddique, Rafat (2008), "Wood Ash", Waste Materials and By-Products in Concrete, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 303–321, doi:10.1007/978-3-540-74294-4_9, ISBN 978-3-540-74293-7, retrieved 24 July 2022 978-3-540-74293-7
Siddique, Rafat (2008), "Wood Ash", Waste Materials and By-Products in Concrete, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 303–321, doi:10.1007/978-3-540-74294-4_9, ISBN 978-3-540-74293-7, retrieved 24 July 2022 978-3-540-74293-7
Woodchips of different wood species (Aspen, Yellow poplar, White oak, White oak bark, Douglas-fir bark) were pyrolyzed in a closed container in a furnace at 500 °C (932 °F).[3] /wiki/Aspen
Etiegni L, Campbell AG (1991). "Physical and chemical characteristics of wood ash". Bioresource Technology. 37 (2): 173–178. doi:10.1016/0960-8524(91)90207-Z. /wiki/Bioresource_Technology
Siddique, Rafat (2008), "Wood Ash", Waste Materials and By-Products in Concrete, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 303–321, doi:10.1007/978-3-540-74294-4_9, ISBN 978-3-540-74293-7, retrieved 24 July 2022 978-3-540-74293-7
dos Santos, Elvis Vieira; Lima, Michael Douglas Roque; Dantas, Kelly das Graças Fernandes; Carvalho, Fábio Israel Martins; Gonçalves, Delman de Almeida; Silva, Arystides Resende; Sun, Honggang; Ferreira, Marciel José; Bufalino, Lina; Hein, Paulo Ricardo Gherardi; Protásio, Thiago de Paula (29 September 2023). "The Inorganic Composition of Tachigali vulgaris Wood: Implications for Bioenergy and Nutrient Balances of Planted Forests in the Amazonia". BioEnergy Research. 17: 114–128. doi:10.1007/s12155-023-10679-3. ISSN 1939-1242. S2CID 263292916. https://doi.org/10.1007/s12155-023-10679-3
Misra MK, Ragland KW, Baker AJ (1993). "Wood Ash Composition as a Function of Furnace Temperature" (PDF). Biomass and Bioenergy. 4 (2): 103–116. doi:10.1016/0961-9534(93)90032-Y. http://www.fpl.fs.fed.us/documnts/pdf1993/misra93a.pdf
Tarun R. Naik; Rudolph N. Kraus & Rakesh Kumar (2001), Wood Ash: A New Source of Pozzolanic Material, Department of Civil Engineering and Mechanics, College of Engineering and Applied Science, The University of Wisconsin – Milwaukee
Lerner BR (16 November 2000). "Wood Ash in the Garden". Purdue University, Department of Horticulture and Landscape Architecture. Retrieved 21 October 2023. https://www.purdue.edu/hla/sites/yardandgarden/wood-ash-in-the-garden/
Hume E (11 April 2006). "Wood Ashes: How to use them in the Garden". Ed Hume Seeds. Archived from the original on 5 July 2019. https://web.archive.org/web/20190705235959/http://www.humeseeds.com/ashes.htm
Woodchips of different wood species (Aspen, Yellow poplar, White oak, White oak bark, Douglas-fir bark) were pyrolyzed in a closed container in a furnace at 500 °C (932 °F).[3] /wiki/Aspen
Lerner BR (16 November 2000). "Wood Ash in the Garden". Purdue University, Department of Horticulture and Landscape Architecture. Retrieved 21 October 2023. https://www.purdue.edu/hla/sites/yardandgarden/wood-ash-in-the-garden/
Lerner BR (16 November 2000). "Wood Ash in the Garden". Purdue University, Department of Horticulture and Landscape Architecture. Retrieved 21 October 2023. https://www.purdue.edu/hla/sites/yardandgarden/wood-ash-in-the-garden/
Misra MK, Ragland KW, Baker AJ (1993). "Wood Ash Composition as a Function of Furnace Temperature" (PDF). Biomass and Bioenergy. 4 (2): 103–116. doi:10.1016/0961-9534(93)90032-Y. http://www.fpl.fs.fed.us/documnts/pdf1993/misra93a.pdf
Misra MK, Ragland KW, Baker AJ (1993). "Wood Ash Composition as a Function of Furnace Temperature" (PDF). Biomass and Bioenergy. 4 (2): 103–116. doi:10.1016/0961-9534(93)90032-Y. http://www.fpl.fs.fed.us/documnts/pdf1993/misra93a.pdf
Misra MK, Ragland KW, Baker AJ (1993). "Wood Ash Composition as a Function of Furnace Temperature" (PDF). Biomass and Bioenergy. 4 (2): 103–116. doi:10.1016/0961-9534(93)90032-Y. http://www.fpl.fs.fed.us/documnts/pdf1993/misra93a.pdf
Siddique, Rafat (2008), "Wood Ash", Waste Materials and By-Products in Concrete, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 303–321, doi:10.1007/978-3-540-74294-4_9, ISBN 978-3-540-74293-7, retrieved 24 July 2022 978-3-540-74293-7
By using gas chromatograpy analytical method. /w/index.php?title=Gas_chromatograpy&action=edit&redlink=1
Barrefors, Gunnar; Petersson, Göran (April 1995). "Volatile hydrocarbons from domestic wood burning". Chemosphere. 30 (8): 1551–1556. Bibcode:1995Chmsp..30.1551B. doi:10.1016/0045-6535(95)00048-D. https://linkinghub.elsevier.com/retrieve/pii/004565359500048D
Barrefors, Gunnar; Petersson, Göran (April 1995). "Volatile hydrocarbons from domestic wood burning". Chemosphere. 30 (8): 1551–1556. Bibcode:1995Chmsp..30.1551B. doi:10.1016/0045-6535(95)00048-D. https://linkinghub.elsevier.com/retrieve/pii/004565359500048D
Barrefors, Gunnar; Petersson, Göran (April 1995). "Volatile hydrocarbons from domestic wood burning". Chemosphere. 30 (8): 1551–1556. Bibcode:1995Chmsp..30.1551B. doi:10.1016/0045-6535(95)00048-D. https://linkinghub.elsevier.com/retrieve/pii/004565359500048D
Barrefors, Gunnar; Petersson, Göran (April 1995). "Volatile hydrocarbons from domestic wood burning". Chemosphere. 30 (8): 1551–1556. Bibcode:1995Chmsp..30.1551B. doi:10.1016/0045-6535(95)00048-D. https://linkinghub.elsevier.com/retrieve/pii/004565359500048D
Lerner BR (16 November 2000). "Wood Ash in the Garden". Purdue University, Department of Horticulture and Landscape Architecture. Retrieved 21 October 2023. https://www.purdue.edu/hla/sites/yardandgarden/wood-ash-in-the-garden/
Sholto Douglas, James (1985). Advanced guide to hydroponics: (soiless cultivation). London: Pelham Books. pp. 345–351. ISBN 9780720715712. 9780720715712
Demeyer A, Voundi Nkana JC, Verloo MG (2001). "Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview". Bioresource Technology. 77 (3): 287–95. doi:10.1016/S0960-8524(00)00043-2. PMID 11272014. /wiki/Bioresource_Technology
Rosenfeld, P. & Henry, C. (2001). "Activated Carbon and Wood Ash Sorption of Wastewater, Compost and Biosolids Odorants". Water Environment Research. 7 (4): 388–393. doi:10.2175/106143001X139425. S2CID 93782154. /w/index.php?title=Water_Environment_Research&action=edit&redlink=1
Rogers, Phil (2003). Ash Glazes (2nd ed.). London: A&C Black. ISBN 978-0-7136-57821. 978-0-7136-57821
McNeil, Ian (2002). An Encyclopedia of the History of Technology. Routledge. p. 203. ISBN 978-1-134-98165-6. 978-1-134-98165-6
McNeil, Ian (2002). An Encyclopedia of the History of Technology. Routledge. p. 214-215. ISBN 978-1-134-98164-9. 978-1-134-98164-9
Jungermann, Eric (2018). Glycerine: A Key Cosmetic Ingredient. Routledge. p. 316. ISBN 978-1-351-44458-3. 978-1-351-44458-3
Cook, E (1925). American Journal of Pharmacy and the Sciences Supporting Public Health. Philadelphia College of Pharmacy and Science. p. 401. https://books.google.com/books?id=iz4fAQAAIAAJ&pg=PA401
Jungermann 2018, p. 316. - Jungermann, Eric (2018). Glycerine: A Key Cosmetic Ingredient. Routledge. p. 316. ISBN 978-1-351-44458-3. https://books.google.com/books?id=qF1ZDwAAQBAJ&pg=PT316
Geoffrey Michael Gadd (March 2010). "Metals, minerals and microbes: geomicrobiology and bioremediation". Microbiology. 156 (Pt 3): 609–643. doi:10.1099/mic.0.037143-0. PMID 20019082. /wiki/Geoffrey_Michael_Gadd
Odukoya, Julianah Olayemi; De Saeger, Sarah et al.: 'Effect of Selected Cooking Ingredients for Nixtamalization on the Reduction of Fusarium Mycotoxins in Maize and Sorghum': National Center for Biotechnology Information https://pmc.ncbi.nlm.nih.gov/articles/PMC7823315/
Cabrera-Ramírez, A.H.; Luzardo-Ocampo I.; Ramírez-Jiménez, A.K.; Morales-Sánchez, E.; Campos-Vega, R.; Gaytán-Martínez, M.: 'Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion': Food Research International
Volume 134, August 2020 https://www.sciencedirect.com/science/article/abs/pii/S0963996920302593
Gomez-Misserian, Gabriela (13 December 2022). "Wood Ash Hominy: From Indigenous Nourishment to Southern Shame to Chef Secret". Garden & Gun. Retrieved 25 March 2024. https://gardenandgun.com/articles/wood-ash-hominy-from-indigenous-nourishment-to-southern-shame-to-chef-secret/
"Burn, baby, burn: Edible ash rounds out restaurant flavors". OnMilwaukee. 19 September 2012. Retrieved 25 March 2024. https://onmilwaukee.com/articles/edibleash
Newman, Heather (11 May 2023). "Vegetables Burnt To Ash Are Unexpectedly A Culinary Masterpiece - The Daily Meal". Daily Meal. Retrieved 25 March 2024. https://www.thedailymeal.com/1283139/vegetables-burnt-ash-unexpectedly-culinary-masterpiece/
Arzani A.: Emmer (Triticum turgidum spp. dicoccum) flour and breads. In Preedy V.R., Watson R.R., Patel V.B. (Eds. 2011), Flour and Breads and their Fortification in Health and Disease Prevention, Academic Press, California, pp. 69-78.
Li Vigni, M.: Monitoring Flour Performance in Bread Making. In Preedy V.R., Watson R.R., Patel V.B. (Eds. 2011), Flour and Breads and their Fortification in Health and Disease Prevention, Academic Press, California, pp. 69-78.
"Décret n° 63-720 du 13 juillet 1963 relatif à la composition des farines de blé, de seigle et de méteil". Journal officiel de la République française. Lois et décrets n° 0169 du 20/07/1963. 169: 6722. 20 July 1963. https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000272197/