The need to describe or reconstruct a neuron's morphology probably began in early days of neuroscience when neurons were labeled or visualized using Golgi's methods. Many of the known neuron types, such as pyramidal neurons and Chandelier cells, were described based on their morphological characterization.
The first computer-assisted neuron reconstruction system, now known as Neurolucida, was developed by Dr. Edmund Glaser and Dr. Hendrik Van der Loos in the 1960s.
Modern approaches to trace a neuron started when digitized pictures of neurons were acquired using microscopes. Initially this was done in 2D. Quickly after the advanced 3D imaging, especially the fluorescence imaging and electron microscopic imaging, there were a huge demand of tracing neuron morphology from these imaging data. To reconstruct 3D volumes of neurons, a popular method is serial section EM, in which the sample is sliced into thin layers and each slice is imaged, resulting in a voxel dataset.
Modern neuronal tracing effort have been completed on voxel volumes with a resolution of up to 4 × 4 × 34 nm3 and database sizes of over 1.4 petabytes.
Neurons can be often traced manually either in 2D or 3D. To do so, one may either directly paint the trajectory of neuronal processes in individual 2D sections of a 3D image volume and manage to connect them, or use the 3D Virtual Finger painting which directly converts any 2D painted trajectory in a projection image to real 3D neuron processes. The major limitation of manual tracing of neurons is the huge amount of labor in the work.
Automated reconstructions of neurons can be done using model (e.g. spheres or tubes) fitting and marching, pruning of over-reconstruction, minimal cost connection of key points, ray-bursting and many others. Skeletonization is a critical step in automated neuron reconstruction, but in the case of all-path-pruning and its variants it is combined with estimation of model parameters (e.g. tube diameters). The major limitation of automated tracing is the lack of precision especially when the neuron morphology is complicated or the image has substantial amount of noise. Newer methods also include the use of convolutional neural networks to segment, reconstruct, and annotate large datasets. These AI models are trained off of 'ground truth' provided by manual or semi-automatic reconstructions and have since achieved superhuman accuracy.
Semi-automated neuron tracing often depends on two strategies. One is to run the completely automated neuron tracing followed by manual curation of such reconstructions. The alternative way is to produce some prior knowledge, such as the termini locations of a neuron, with which a neuron can be more easily traced automatically. Semi-automated tracing is often thought to be a balanced solution that has acceptable time cost and reasonably good reconstruction accuracy. The open source software Vaa3D-Neuron, Neurolucida 360, Imaris Filament Tracer and Aivia all provide both categories of methods.
Tracing of electron microscopy image is thought to be more challenging than tracing light microscopy images, while the latter is still quite difficult, according to the DIADEM competition. For tracing electron microscopy data, manual tracing is used more often than the alternative automated or semi-automated methods. For tracing light microscopy data, more times the automated or semi-automated methods are used.
Since tracing electron microscopy images takes substantial amount time, collaborative manual tracing software is useful. Crowdsourcing is an alternative way to effectively collect collaborative manual reconstruction results for such image data sets.
A number of neuron tracing tools especially software packages are available. One comprehensive Open Source software package that contains implementation of a number of neuron tracing methods developed in different research groups as well as many neuron utilities functions such as quantitative measurement, parsing, comparison, is Vaa3D and its Vaa3D-Neuron modules. Some other free tools such as NeuronStudio also provide tracing function based on specific methods. Neuroscientists also use commercial tools such as Neurolucida, Neurolucida 360, Aivia, Amira, etc. to trace and analyse neurons. A 2012 study show that Neurolucida is cited over 7 times more than all other available neuron tracing programs combined, and is also the most widely used and versatile system to produce neuronal reconstruction. The BigNeuron project (https://alleninstitute.org/bigneuron/about/) is a recent substantial international collaboration effort to integrate the majority of known neuron tracing tools onto a common platform to facilitate Open Source, easy accessing of various tools at one single place. Powerful new tools such as UltraTracer, that can trace arbitrarily large image volume, have been produced through this effort. The online tool WEBKNOSSOS has a Flight Mode for high-speed tracing of axons or dendrites, in which trained annotator crowds achieve tracing speeds of 1.5 ± 0.6 mm/h for axons and 2.1 ± 0.9 mm/h for dendrites in 3D electron microscopy data.
Reconstructions of single neurons can be stored in various formats. This largely depends on the software that have been used to trace such neurons. The SWC format, which consists of a number of topologically connected structural compartments (e.g. a single tube or sphere), is often used to store digital traced neurons, especially when the morphology lacks or does not need detailed 3D shape models for individual compartments. Other more sophisticated neuron formats have separate geometrical modeling of the neuron cell body and neuron processes using Neurolucida among others.
There are a few common single neuron reconstruction databases. A widely used database is http://NeuroMorpho.Org which contains over 86,000 neuron morphology of >40 species contributed worldwide by a number of research labs. Allen Institute for Brain Science, HHMI's Janelia Research Campus, and other institutes are also generating large-scale single neuron databases.
Recently, databases of entire reconstructed neural volumes have also been made avaliable. The Max Planck Zebrafish Brain Atlas and its associated dataset are the reconstructed connectome of the 208 neurons of a zebrafish larva. The CATMAID database contains the traced connectome of a Platynereis larval connectome with 1,500 neurons and 6,500 non-neural cells. The Flywire connectome is a reconstruction and annotation of the approximately 140,000 annotated neurons making up the brain of an adult Drosophila. The H01 dataset is a reconstructed cubic millimeter of human brain tissue.
Saleeba, Christine; Dempsey, Bowen; Le, Sheng; Goodchild, Ann; McMullan, Simon (27 Aug 2019). "A Student's Guide to Neural Circuit Tracing". Frontiers in Neuroscience. 13: 897. doi:10.3389/fnins.2019.00897. ISSN 1662-4548. PMC 6718611. PMID 31507369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718611
Peng, Hanchuan; Roysam, Badri; Ascoli, Giorgio (2013). "Automated image computing reshapes computational neuroscience". BMC Bioinformatics. 14: 293. doi:10.1186/1471-2105-14-293. PMC 3853071. PMID 24090217. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853071
Meijering, Erik (2010). "Neuron Tracing in Perspective". Cytometry Part A. 77 (7): 693–704. CiteSeerX 10.1.1.623.3000. doi:10.1002/cyto.a.20895. PMID 20583273. S2CID 14047936. /wiki/CiteSeerX_(identifier)
Schwartz E (1990). Computational neuroscience. Cambridge, Mass: MIT Press. ISBN 978-0-262-19291-0. 978-0-262-19291-0
Peng, H., Long, F., Zhao, T., and Myers, E.W. (2011). "Proof-editing is the bottleneck of 3D neuron reconstruction: the problem and solutions". Neuroinformatics. 9 (2–3): 103–105. doi:10.1007/s12021-010-9090-x. PMID 21170608. S2CID 4995280.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://link.springer.com/article/10.1007/s12021-010-9090-x
Peng, H., Tang, J., Xiao, H., Bria, A.; et al. (2014). "Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis". Nature Communications. 5: 4342. Bibcode:2014NatCo...5.4342P. doi:10.1038/ncomms5342. PMC 4104457. PMID 25014658.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104457
Svara, Fabian; Förster, Dominique; Kubo, Fumi; Januszewski, Michał; dal Maschio, Marco; Schubert, Philipp J.; Kornfeld, Jörgen; Wanner, Adrian A.; Laurell, Eva; Denk, Winfried; Baier, Herwig (24 October 2022). "Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain". Nature Methods. 19 (11): 1357–1366. doi:10.1038/s41592-022-01621-0. ISSN 1548-7091. PMC 9636024. PMID 36280717. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636024
Dorkenwald, Sven; Matsliah, Arie; Sterling, Amy R.; Schlegel, Philipp; Yu, Szi-chieh; McKellar, Claire E.; Lin, Albert; Costa, Marta; Eichler, Katharina; Yin, Yijie; Silversmith, Will; Schneider-Mizell, Casey; Jordan, Chris S.; Brittain, Derrick; Halageri, Akhilesh (3 October 2024). "Neuronal wiring diagram of an adult brain". Nature. 634 (8032): 124–138. doi:10.1038/s41586-024-07558-y. ISSN 0028-0836. PMC 11446842. PMID 39358518. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446842
Glaser, E. M.; Vanderloos, H. (1965-01-01). "A Semi-Automatic Computer-Microscope for the Analysis of Neuronal Morphology". IEEE Transactions on Biomedical Engineering. 12: 22–31. doi:10.1109/TBME.1965.4502337. ISSN 0018-9294. PMID 14291539. /wiki/Doi_(identifier)
Svara, Fabian; Förster, Dominique; Kubo, Fumi; Januszewski, Michał; dal Maschio, Marco; Schubert, Philipp J.; Kornfeld, Jörgen; Wanner, Adrian A.; Laurell, Eva; Denk, Winfried; Baier, Herwig (24 October 2022). "Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain". Nature Methods. 19 (11): 1357–1366. doi:10.1038/s41592-022-01621-0. ISSN 1548-7091. PMC 9636024. PMID 36280717. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636024
Zheng, Zhihao; Lauritzen, J. Scott; Perlman, Eric; Robinson, Camenzind G.; Nichols, Matthew; Milkie, Daniel; Torrens, Omar; Price, John; Fisher, Corey B.; Sharifi, Nadiya; Calle-Schuler, Steven A.; Kmecova, Lucia; Ali, Iqbal J.; Karsh, Bill; Trautman, Eric T. (26 July 2018). "A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster". Cell. 174 (3): 730–743.e22. doi:10.1016/j.cell.2018.06.019. ISSN 0092-8674. PMC 6063995. PMID 30033368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063995
Randel, Nadine; Shahidi, Réza; Verasztó, Csaba; Bezares-Calderón, Luis A; Schmidt, Steffen; Jékely, Gáspár (10 June 2015). Marder, Eve (ed.). "Inter-individual stereotypy of the Platynereis larval visual connectome". eLife. 4: e08069. doi:10.7554/eLife.08069. ISSN 2050-084X. PMC 4477197. PMID 26061864. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477197
Macrina, Thomas; Lee, Kisuk; Lu, Ran; Turner, Nicholas L.; Wu, Jingpeng; Popovych, Sergiy; Silversmith, William; Kemnitz, Nico; Bae, J. Alexander (5 August 2021), Petascale neural circuit reconstruction: automated methods, doi:10.1101/2021.08.04.455162, retrieved 30 May 2025 http://biorxiv.org/lookup/doi/10.1101/2021.08.04.455162
Macrina, Thomas; Lee, Kisuk; Lu, Ran; Turner, Nicholas L.; Wu, Jingpeng; Popovych, Sergiy; Silversmith, William; Kemnitz, Nico; Bae, J. Alexander (5 August 2021), Petascale neural circuit reconstruction: automated methods, doi:10.1101/2021.08.04.455162, retrieved 30 May 2025 http://biorxiv.org/lookup/doi/10.1101/2021.08.04.455162
Shapson-Coe, Alexander; Januszewski, Michał; Berger, Daniel R.; Pope, Art; Wu, Yuelong; Blakely, Tim; Schalek, Richard L.; Li, Peter H.; Wang, Shuohong; Maitin-Shepard, Jeremy; Karlupia, Neha; Dorkenwald, Sven; Sjostedt, Evelina; Leavitt, Laramie; Lee, Dongil (10 May 2024). "A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution". Science. 384 (6696). Bibcode:2024Sci...384k4858S. doi:10.1126/science.adk4858. ISSN 0036-8075. PMC 11718559. PMID 38723085. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718559
Al-Kofahi, K.A.; et al. (2002). "Rapid automated three-dimensional tracing of neurons from confocal image stacks". IEEE Trans. Inf. Technol. Biomed. 6 (2): 171–187. CiteSeerX 10.1.1.57.9339. doi:10.1109/titb.2002.1006304. PMID 12075671. S2CID 12413677. /wiki/CiteSeerX_(identifier)
Peng, H.; et al. (2011). "Automatic 3D neuron tracing using all-path pruning". Bioinformatics. 27 (13): i239 – i247. doi:10.1093/bioinformatics/btr237. PMC 3117353. PMID 21685076. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117353
Rodriguez, A.; et al. (2009). "Three-dimensional neuron tracing by voxel scooping". J. Neurosci. Methods. 184 (1): 169–175. doi:10.1016/j.jneumeth.2009.07.021. PMC 2753723. PMID 19632273. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753723
Xiao, H; et al. (2013). "APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of gray-weighted image distance-trees". Bioinformatics. 29 (11): 1448–1454. doi:10.1093/bioinformatics/btt170. PMC 3661058. PMID 23603332. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661058
Dorkenwald, Sven; Matsliah, Arie; Sterling, Amy R.; Schlegel, Philipp; Yu, Szi-chieh; McKellar, Claire E.; Lin, Albert; Costa, Marta; Eichler, Katharina; Yin, Yijie; Silversmith, Will; Schneider-Mizell, Casey; Jordan, Chris S.; Brittain, Derrick; Halageri, Akhilesh (3 October 2024). "Neuronal wiring diagram of an adult brain". Nature. 634 (8032): 124–138. doi:10.1038/s41586-024-07558-y. ISSN 0028-0836. PMC 11446842. PMID 39358518. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446842
Macrina, Thomas; Lee, Kisuk; Lu, Ran; Turner, Nicholas L.; Wu, Jingpeng; Popovych, Sergiy; Silversmith, William; Kemnitz, Nico; Bae, J. Alexander (5 August 2021), Petascale neural circuit reconstruction: automated methods, doi:10.1101/2021.08.04.455162, retrieved 30 May 2025 http://biorxiv.org/lookup/doi/10.1101/2021.08.04.455162
Shapson-Coe, Alexander; Januszewski, Michał; Berger, Daniel R.; Pope, Art; Wu, Yuelong; Blakely, Tim; Schalek, Richard L.; Li, Peter H.; Wang, Shuohong; Maitin-Shepard, Jeremy; Karlupia, Neha; Dorkenwald, Sven; Sjostedt, Evelina; Leavitt, Laramie; Lee, Dongil (10 May 2024). "A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution". Science. 384 (6696). Bibcode:2024Sci...384k4858S. doi:10.1126/science.adk4858. ISSN 0036-8075. PMC 11718559. PMID 38723085. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718559
Schlegel, Philipp; Yin, Yijie; Bates, Alexander S.; Dorkenwald, Sven; Eichler, Katharina; Brooks, Paul; Han, Daniel S.; Gkantia, Marina; dos Santos, Marcia; Munnelly, Eva J.; Badalamente, Griffin; Serratosa Capdevila, Laia; Sane, Varun A.; Fragniere, Alexandra M. C.; Kiassat, Ladann (3 October 2024). "Whole-brain annotation and multi-connectome cell typing of Drosophila". Nature. 634 (8032): 139–152. doi:10.1038/s41586-024-07686-5. ISSN 0028-0836. PMC 11446831. PMID 39358521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446831
"Using AI to optimize for rapid neural imaging". MIT News | Massachusetts Institute of Technology. 2023-11-06. Retrieved 2025-05-30. https://news.mit.edu/2023/using-ai-optimize-rapid-neural-imaging-1106
"Using Artificial Intelligence to Map the Brain's Wiring". Simons Foundation. 2017-09-11. Retrieved 2025-05-30. https://www.simonsfoundation.org/2017/09/11/using-artificial-intelligence-to-map-the-brains-wiring/
Macrina, Thomas; Lee, Kisuk; Lu, Ran; Turner, Nicholas L.; Wu, Jingpeng; Popovych, Sergiy; Silversmith, William; Kemnitz, Nico; Bae, J. Alexander (5 August 2021), Petascale neural circuit reconstruction: automated methods, doi:10.1101/2021.08.04.455162, retrieved 30 May 2025 http://biorxiv.org/lookup/doi/10.1101/2021.08.04.455162
Michalowski, Jennifer (2020-09-28). "AI learns to trace neuronal pathways". Cold Spring Harbor Laboratory. Retrieved 2025-05-30. https://www.cshl.edu/ai-learns-to-trace-neuronal-pathways/
Liu, Y (2011). "The DIADEM and beyond". Neuroinformatics. 9 (2–3): 99–102. doi:10.1007/s12021-011-9102-5. PMID 21431331. https://doi.org/10.1007%2Fs12021-011-9102-5
Helmstaedter M, Briggman KL, Denk W (2011). "High-accuracy neurite reconstruction for high-throughput neuroanatomy". Nat Neurosci. 14 (8): 1081–1088. doi:10.1038/nn.2868. PMID 21743472. S2CID 17795934. https://hal.archives-ouvertes.fr/hal-00658165/document
Kim; et al. (2014). "Space–time wiring specificity supports direction selectivity in the retina". Nature. 509 (7500): 331–336. Bibcode:2014Natur.509..331.. doi:10.1038/nature13240. PMC 4074887. PMID 24805243. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074887
Rodriguez, Alfredo (2010-02-18). "Tools: NeuronStudio (Beta) Version 0.9.92, last updated on November 19, 2009". CNIC, Mount Sinai School of Medicine. Archived from the original on 2018-09-16. https://web.archive.org/web/20180916171008/http://research.mssm.edu/cnic/tools-ns.html
Halavi, Maryam; Hamilton, Kelly A.; Parekh, Ruchi; Ascoli, Giorgio A. (2012-01-01). "Digital reconstructions of neuronal morphology: three decades of research trends". Frontiers in Neuroscience. 6: 49. doi:10.3389/fnins.2012.00049. ISSN 1662-453X. PMC 3332236. PMID 22536169. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3332236
Aguiar, Paulo; Sousa, Mafalda; Szucs, Peter (2013-06-14). "Versatile Morphometric Analysis and Visualization of the Three-Dimensional Structure of Neurons". Neuroinformatics. 11 (4): 393–403. doi:10.1007/s12021-013-9188-z. ISSN 1539-2791. PMID 23765606. S2CID 16591493. /wiki/Doi_(identifier)
Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane (2015-07-15). "BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images". Neuron. 87 (2): 252–256. doi:10.1016/j.neuron.2015.06.036. PMC 4725298. PMID 26182412. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725298
Peng, Hanchuan; Zhou, Zhi; Meijering, Erik (2016). "Automatic Tracing of Ultra-Volume of Neuronal Images". bioRxiv 10.1101/087726. /wiki/BioRxiv_(identifier)
Boergens, Kevin M.; Berning, Manuel; Bocklisch, Tom; Bräunlein, Dominic; Drawitsch, Florian; Frohnhofen, Johannes; Herold, Tom; Otto, Philipp; Rzepka, Norman; Werkmeister, Thomas; Werner, Daniel; Wiese, Georg; Wissler, Heiko; Helmstaedter, Moritz (July 2017). "webKnossos: efficient online 3D data annotation for connectomics". Nature Methods. 14 (7): 691–694. doi:10.1038/nmeth.4331. ISSN 1548-7105. PMID 28604722. S2CID 30609228. https://www.nature.com/articles/nmeth.4331
Bianchi, Serena; Stimpson, Cheryl D.; Bauernfeind, Amy L.; Schapiro, Steven J.; Baze, Wallace B.; McArthur, Mark J.; Bronson, Ellen; Hopkins, William D.; Semendeferi, Katerina (2013-10-01). "Dendritic Morphology of Pyramidal Neurons in the Chimpanzee Neocortex: Regional Specializations and Comparison to Humans". Cerebral Cortex. 23 (10): 2429–2436. doi:10.1093/cercor/bhs239. ISSN 1047-3211. PMC 3767963. PMID 22875862. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767963
Silberberg, Gilad; Markram, Henry (2007-03-01). "Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells". Neuron. 53 (5): 735–746. doi:10.1016/j.neuron.2007.02.012. ISSN 0896-6273. PMID 17329212. S2CID 15624023. https://doi.org/10.1016%2Fj.neuron.2007.02.012
Bianchi, Serena; Bauernfeind, Amy L.; Gupta, Kanika; Stimpson, Cheryl D.; Spocter, Muhammad A.; Bonar, Christopher J.; Manger, Paul R.; Hof, Patrick R.; Jacobs, Bob (2011-04-01). "Neocortical neuron morphology in Afrotheria: comparing the rock hyrax with the African elephant". Annals of the New York Academy of Sciences. 1225 (1): 37–46. Bibcode:2011NYASA1225...37B. doi:10.1111/j.1749-6632.2011.05991.x. ISSN 1749-6632. PMID 21534991. S2CID 18281955. /wiki/Bibcode_(identifier)
Ascoli GA, Donohue DE, Halavi M (2007). "NeuroMorpho.Org - A central resource for neuronal morphologies". J Neurosci. 27 (35): 9247–9251. doi:10.1523/jneurosci.2055-07.2007. PMC 6673130. PMID 17728438. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673130
Svara, Fabian; Förster, Dominique; Kubo, Fumi; Januszewski, Michał; dal Maschio, Marco; Schubert, Philipp J.; Kornfeld, Jörgen; Wanner, Adrian A.; Laurell, Eva; Denk, Winfried; Baier, Herwig (24 October 2022). "Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain". Nature Methods. 19 (11): 1357–1366. doi:10.1038/s41592-022-01621-0. ISSN 1548-7091. PMC 9636024. PMID 36280717. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636024
Verasztó, Csaba; Jasek, Sanja; Gühmann, Martin; Shahidi, Réza; Ueda, Nobuo; Beard, James David; Mendes, Sara; Heinz, Konrad; Bezares-Calderón, Luis Alberto (22 August 2022), Whole-animal connectome and cell-type complement of the three-segmented Platynereis dumerilii larva, doi:10.1101/2020.08.21.260984, retrieved 30 May 2025 http://biorxiv.org/lookup/doi/10.1101/2020.08.21.260984
Schlegel, Philipp; Yin, Yijie; Bates, Alexander S.; Dorkenwald, Sven; Eichler, Katharina; Brooks, Paul; Han, Daniel S.; Gkantia, Marina; dos Santos, Marcia; Munnelly, Eva J.; Badalamente, Griffin; Serratosa Capdevila, Laia; Sane, Varun A.; Fragniere, Alexandra M. C.; Kiassat, Ladann (3 October 2024). "Whole-brain annotation and multi-connectome cell typing of Drosophila". Nature. 634 (8032): 139–152. doi:10.1038/s41586-024-07686-5. ISSN 0028-0836. PMC 11446831. PMID 39358521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446831
Dorkenwald, Sven; Matsliah, Arie; Sterling, Amy R.; Schlegel, Philipp; Yu, Szi-chieh; McKellar, Claire E.; Lin, Albert; Costa, Marta; Eichler, Katharina; Yin, Yijie; Silversmith, Will; Schneider-Mizell, Casey; Jordan, Chris S.; Brittain, Derrick; Halageri, Akhilesh (3 October 2024). "Neuronal wiring diagram of an adult brain". Nature. 634 (8032): 124–138. doi:10.1038/s41586-024-07558-y. ISSN 0028-0836. PMC 11446842. PMID 39358518. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446842
Shapson-Coe, Alexander; Januszewski, Michał; Berger, Daniel R.; Pope, Art; Wu, Yuelong; Blakely, Tim; Schalek, Richard L.; Li, Peter H.; Wang, Shuohong; Maitin-Shepard, Jeremy; Karlupia, Neha; Dorkenwald, Sven; Sjostedt, Evelina; Leavitt, Laramie; Lee, Dongil (10 May 2024). "A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution". Science. 384 (6696). Bibcode:2024Sci...384k4858S. doi:10.1126/science.adk4858. ISSN 0036-8075. PMC 11718559. PMID 38723085. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718559