Polymer solution casting technology can be deployed utilizing a host of different polymer materials depending on the application and design inputs, including those used in Class I, II and III medical devices,2 and for the preparation of polymer electrolytes. The earliest and most commonly found materials were polyvinyl chlorides (PVC) due to their advantages in cost, physical properties and clarity. Over the past twenty years, there has been scrutiny of the long term health effects of the PVC base materials relating to the plasticizers and stabilizers which are needed to ensure adequate shelf life of sterilized product. More recently, newly engineered formulations have eliminated these biocompatibility concerns while extending the shelf life, and PVC has re-emerged as a preferred polymer for use in interventional and surgical applications.
Polyurethane has emerged as another polymer that meets the medical device market's demands for thinner wall sections, longer lengths and extended blood exposure. The high strength and range of properties make these materials an excellent choice for soft elastomer applications. Among the first commercial polyurethane medical products were non-allergenic medical gloves, developed as a response to latex allergies. These advanced polymers offer a full range of physical properties, improved biocompatibility, and lubricous properties by way of custom formulations and coatings.
Another material choice for polymer solution casting is silicone urethane copolymers, which are among the most biocompatible synthetic materials. This class of medical grade material was developed for long-term implantable device applications and offers the physical characteristics of high elongation, low modulus of elasticity, excellent recovery, and resistance to chemicals, oil, and UV light.
While there exists a number of materials to choose from while deploying polymer solution casting technology, the material science work continues in the areas of wall thickness, strength, lubricity, biocompatibility and clarity as well as interactions of the liquid polymers with extruded and injection molded components.
Solvent cast technology - a versatile tool for thin film production. springer.com. Retrieved on 2013-10-31. https://link.springer.com/chapter/10.1007%2Fb107336 ↩
Polymers in Medicine II. springer.com. Retrieved on 2013-10-31. https://link.springer.com/book/10.1007%2F978-1-4613-1809-5 ↩