The square lattice's symmetry category is wallpaper group p4m. A pattern with this lattice of translational symmetry cannot have more, but may have less symmetry than the lattice itself. An upright square lattice can be viewed as a diagonal square lattice with a mesh size that is √2 times as large, with the centers of the squares added. Correspondingly, after adding the centers of the squares of an upright square lattice one obtains a diagonal square lattice with a mesh size that is √2 times as small as that of the original lattice. A pattern with 4-fold rotational symmetry has a square lattice of 4-fold rotocenters that is a factor √2 finer and diagonally oriented relative to the lattice of translational symmetry.
With respect to reflection axes there are three possibilities:
The square lattice class names, Schönflies notation, Hermann-Mauguin notation, orbifold notation, Coxeter notation, and wallpaper groups are listed in the table below.
Conway, John; Sloane, Neil J. A. (1999), Sphere Packings, Lattices and Groups, Springer, p. 106, ISBN 9780387985855. 9780387985855 ↩
Golubitsky, Martin; Stewart, Ian (2003), The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space, Progress in Mathematics, vol. 200, Springer, p. 129, ISBN 9783764321710. 9783764321710 ↩
Field, Michael; Golubitsky, Martin (2009), Symmetry in Chaos: A Search for Pattern in Mathematics, Art, and Nature (2nd ed.), SIAM, p. 47, ISBN 9780898717709. 9780898717709 ↩
Johnson, Norman W.; Weiss, Asia Ivić (1999), "Quadratic integers and Coxeter groups", Canadian Journal of Mathematics, 51 (6): 1307–1336, doi:10.4153/CJM-1999-060-6. See in particular the top of p. 1320. /wiki/Norman_Johnson_(mathematician) ↩
Schattschneider, Doris; Senechal, Marjorie (2004), "Tilings", in Goodman, Jacob E.; O'Rourke, Joseph (eds.), Handbook of Discrete and Computational Geometry, Discrete Mathematics and Its Applications (2nd ed.), CRC Press, pp. 53–72, ISBN 9781420035315. See in particular the table on p. 62 relating IUC notation to orbifold notation. 9781420035315 ↩
Johnston, Bernard L.; Richman, Fred (1997), Numbers and Symmetry: An Introduction to Algebra, CRC Press, p. 159, ISBN 9780849303012. 9780849303012 ↩