The serotonin created by the brain comprises around 10% of total body serotonin. The majority (80-90%) is found in the gastrointestinal (GI) tract. It travels around the brain along the medial forebrain bundle and acts on serotonin receptors. In the peripheral nervous system (such as in the gut wall) serotonin regulates vascular tone.
Although changes in neurochemistry are found immediately after taking these antidepressants, symptoms may not begin to improve until several weeks after administration. Increased transmitter levels in the synapse alone does not relieve the depression or anxiety.
Neuromodulators may alter the output of a physiological system by acting on the associated inputs (for instance, central pattern generators). However, modeling work suggests that this alone is insufficient, because the neuromuscular transformation from neural input to muscular output may be tuned for particular ranges of input. Stern et al. (2007) suggest that neuromodulators must act not only on the input system but must change the transformation itself to produce the proper contractions of muscles as output.
There are three main components of tonic transmission: Continued release, sustained release, and baseline regulation. In the context of neuromodulation, continuous release is responsible for releasing neurotransmitters/neuromodulators at a constant low level from glial cells and tonic active neurons. Sustained Influence provides long-term stability to the entire process, and baseline regulation ensures that the neurons are in a continued state of readiness to respond to any signals. Acetylcholine, noradrenaline, dopamine, norepinephrine, and serotonin are some of the main components in tonic transmission to mediate arousal and attention.
There are three main components of phasic transmission: burst release, transient effects, and stimulus-driven effects. As the name suggests, burst release is in charge of releasing neurotransmitters/neuromodulators in intense, acute bursts. Transient effects create acute momentary adjustments in neural activity. Lastly, as the name suggests, stimulus-driven effects react to sensory input, external stressors, and reward stimuli, which involve dopamine, norepinephrine, and serotonin.
The term Neuromodulation is also known in medicine as a targeted artificial modification of neuronal activity through the delivery of chemical agents or electroceutical stimulation to specific neurological parts (see more in the wikiarticle Neuromodulation (medicine)).
Invasive and non-invasive treatment methods form a field of medicine called neurotherapy. There are two main categories for neuromodulation therapy: chemical and electroceutical. The noninvasive electroceutical neurotherapy consists of five techniques:
Electrical neuromodulation has three subcategories: deep brain, spinal cord, and transcranial, each aiming to treat specific conditions. Deep brain stimulation involves electrodes being surgically implanted into specific sections of the brain that are commonly responsible for movement and motor control deficiencies and disorders like Parkinson's and tremors. Spinal cord stimulation works by being placed near the spinal cord to send electrical signals through the body to treat various forms of chronic pain like lower back pain and CRPS. This form of neuromodulator treatment is considered one of the more high-risk treatments because of its manipulation near the spinal cord. Transcranial magnetic stimulation is slightly different in that it utilizes a magnetic field to generate electrical currents throughout the brain. This treatment is widely used to remedy various mental health conditions like depression, obsessive-compulsive disorder, and other mood disorders.
Neuromodulation is often used as a treatment mechanism for moderate to severe migraines by way of nerve stimulation. These treatments work by utilizing the basic ascending pathways. There are three main modes. It works by connecting a device to the body that sends electrical pulses directly to the affected site (Transcutaneous Electrical Nerve Stimulation), directly to the brain (invasive electrical Neurotherapy techniques), or by holding a device close to the neck that works to block pain signals modulation from the PNS to the CNS. and sends two of the most notable modes of that treatment, which are electrical and magnetic stimulation. Electrical nerve stimulation and some of the characterizations include transcranial alternating stimulation and transcranial direct current stimulation. The other is magnetic stimulation, which includes single pulse and repetitive transcranial stimulation.
Chemical neuromodulation mostly consists of collaborating natural and artificial chemical substances to treat various conditions. It uses both invasive and non-invasive modes of treatment, including pumps, injections, and oral medications. This mode of treatment can be used to manage immune responses like inflammation, mood, and motor disorders.
DeRiemer SA, Strong JA, Albert KA, Greengard P, Kaczmarek LK (24–30 January 1985). "Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C". Nature. 313 (6000): 313–316. Bibcode:1985Natur.313..313D. doi:10.1038/313313a0. PMID 2578617. /wiki/Bibcode_(identifier)
Harris-Warrick RM, Flamm RE (July 1987). "Multiple mechanisms of bursting in a conditional bursting neuron". The Journal of Neuroscience. 7 (7): 2113–2128. doi:10.1523/JNEUROSCI.07-07-02113.1987. PMC 6568948. PMID 3112322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568948
Harris-Warrick RM, Flamm RE (July 1987). "Multiple mechanisms of bursting in a conditional bursting neuron". The Journal of Neuroscience. 7 (7): 2113–2128. doi:10.1523/JNEUROSCI.07-07-02113.1987. PMC 6568948. PMID 3112322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568948
Klein M, Kandel ER (November 1980). "Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia". Proceedings of the National Academy of Sciences of the United States of America. 77 (11): 6912–6916. Bibcode:1980PNAS...77.6912K. doi:10.1073/pnas.77.11.6912. PMC 350401. PMID 6256770. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC350401
Fortin DA, Levine ES (January 2007). "Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons". Cerebral Cortex. 17 (1): 163–174. doi:10.1093/cercor/bhj133. PMID 16467564. https://doi.org/10.1093%2Fcercor%2Fbhj133
Good CH (January 2007). "Endocannabinoid-dependent regulation of feedforward inhibition in cerebellar Purkinje cells". The Journal of Neuroscience. 27 (1): 1–3. doi:10.1523/JNEUROSCI.4842-06.2007. PMC 6672293. PMID 17205618. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672293
Hashimotodani Y, Ohno-Shosaku T, Kano M (January 2007). "Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus". The Journal of Neuroscience. 27 (5): 1211–1219. doi:10.1523/JNEUROSCI.4159-06.2007. PMC 6673197. PMID 17267577. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673197
Marder E (October 2012). "Neuromodulation of neuronal circuits: back to the future". Neuron. 76 (1): 1–11. doi:10.1016/j.neuron.2012.09.010. PMC 3482119. PMID 23040802. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482119
Conlay LA, Sabounjian LA, Wurtman RJ (October 1992). "Exercise and neuromodulators: choline and acetylcholine in marathon runners". International Journal of Sports Medicine. 13 (Suppl 1): S141 – S142. doi:10.1055/s-2007-1024619. PMID 1483754. [verification needed] /wiki/Doi_(identifier)
Unless else specified in boxes, then ref is: Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. pp. 474 for noradrenaline system, page 476 for dopamine system, page 480 for serotonin system and page 483 for cholinergic system. ISBN 978-0-443-07145-4. 978-0-443-07145-4
Unless else specified in boxes, then ref is: Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. pp. 474 for noradrenaline system, page 476 for dopamine system, page 480 for serotonin system and page 483 for cholinergic system. ISBN 978-0-443-07145-4. 978-0-443-07145-4
Unless else specified in boxes, then ref is: Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. pp. 474 for noradrenaline system, page 476 for dopamine system, page 480 for serotonin system and page 483 for cholinergic system. ISBN 978-0-443-07145-4. 978-0-443-07145-4
Woolf NJ, Butcher LL (December 1989). "Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum". Brain Research Bulletin. 23 (6): 519–540. doi:10.1016/0361-9230(89)90197-4. PMID 2611694. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (December 1989). "Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum". Brain Research Bulletin. 23 (6): 519–540. doi:10.1016/0361-9230(89)90197-4. PMID 2611694. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (December 1989). "Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum". Brain Research Bulletin. 23 (6): 519–540. doi:10.1016/0361-9230(89)90197-4. PMID 2611694. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (December 1989). "Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum". Brain Research Bulletin. 23 (6): 519–540. doi:10.1016/0361-9230(89)90197-4. PMID 2611694. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (December 1989). "Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum". Brain Research Bulletin. 23 (6): 519–540. doi:10.1016/0361-9230(89)90197-4. PMID 2611694. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (December 1989). "Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum". Brain Research Bulletin. 23 (6): 519–540. doi:10.1016/0361-9230(89)90197-4. PMID 2611694. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (December 1989). "Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum". Brain Research Bulletin. 23 (6): 519–540. doi:10.1016/0361-9230(89)90197-4. PMID 2611694. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (May 1986). "Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain". Brain Research Bulletin. 16 (5): 603–637. doi:10.1016/0361-9230(86)90134-6. PMID 3742247. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (May 1986). "Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain". Brain Research Bulletin. 16 (5): 603–637. doi:10.1016/0361-9230(86)90134-6. PMID 3742247. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (May 1986). "Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain". Brain Research Bulletin. 16 (5): 603–637. doi:10.1016/0361-9230(86)90134-6. PMID 3742247. /wiki/Doi_(identifier)
Woolf NJ, Butcher LL (May 1986). "Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain". Brain Research Bulletin. 16 (5): 603–637. doi:10.1016/0361-9230(86)90134-6. PMID 3742247. /wiki/Doi_(identifier)
Sara SJ, Bouret S (October 2012). "Orienting and reorienting: the locus coeruleus mediates cognition through arousal". Neuron. 76 (1): 130–141. doi:10.1016/j.neuron.2012.09.011. PMID 23040811. https://doi.org/10.1016%2Fj.neuron.2012.09.011
O'Donnell J, Zeppenfeld D, McConnell E, Pena S, Nedergaard M (November 2012). "Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance". Neurochemical Research. 37 (11): 2496–2512. doi:10.1007/s11064-012-0818-x. PMC 3548657. PMID 22717696. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548657
Scheler G (April 2004). "Regulation of neuromodulator receptor efficacy--implications for whole-neuron and synaptic plasticity". Progress in Neurobiology. 72 (6): 399–415. arXiv:q-bio/0401039. Bibcode:2004q.bio.....1039S. doi:10.1016/j.pneurobio.2004.03.008. PMID 15177784. /wiki/ArXiv_(identifier)
McIntosh J. "What is serotonin? What does serotonin do?". Medical News Today. Retrieved 12 April 2015. http://www.medicalnewstoday.com/articles/232248.php#where_does_serotonin_come_from
Berger M, Gray JA, Roth BL (2009). "The expanded biology of serotonin". Annual Review of Medicine. 60: 355–366. doi:10.1146/annurev.med.60.042307.110802. PMC 5864293. PMID 19630576. /wiki/Bryan_Roth
Kandel ER (1991). Principles of Neural Science. East Norwalk, Connecticut: Appleton & Lang. pp. 872–873. ISBN 978-0-8385-8034-9. 978-0-8385-8034-9
"Depression Medication: Antidepressants, SSRIs, Antidepressants, SNRIs, Antidepressants, TCAs, Antidepressants, MAO Inhibitors, Augmenting Agents, Serotonin-Dopamine Activity Modulators, Antidepressants, Other, Stimulants, Thyroid Products, Neurology & Psychiatry, Herbals". emedicine.medscape.com. Retrieved 7 November 2016. http://emedicine.medscape.com/article/286759-medication#2
Coryell W (2016). "Drug Treatment of Depression". In Porter RS (ed.). The Merck Manual (19th ed.). Whitehouse Station, N.J.: Merck. ISBN 978-0-911910-19-3. 978-0-911910-19-3
Kandel ER (1991). Principles of Neural Science. East Norwalk, Connecticut: Appleton & Lang. pp. 872–873. ISBN 978-0-8385-8034-9. 978-0-8385-8034-9
Coryell W (2016). "Drug Treatment of Depression". In Porter RS (ed.). The Merck Manual (19th ed.). Whitehouse Station, N.J.: Merck. ISBN 978-0-911910-19-3. 978-0-911910-19-3
"Drug Treatment of Depression". Merck Manuals Professional Edition. Retrieved 7 November 2016. http://www.merckmanuals.com/professional/psychiatric-disorders/mood-disorders/drug-treatment-of-depression#v27413108
Kandel ER (1991). Principles of Neural Science. East Norwalk, Connecticut: Appleton & Lang. pp. 872–873. ISBN 978-0-8385-8034-9. 978-0-8385-8034-9
Coryell W (2016). "Drug Treatment of Depression". In Porter RS (ed.). The Merck Manual (19th ed.). Whitehouse Station, N.J.: Merck. ISBN 978-0-911910-19-3. 978-0-911910-19-3
Shulman KI, Walker SE (October 2012). "Irreversible monoamine oxidase inhibitors revisited". Psychiatric Times. 29 (10): 27. Gale A332893508. https://www.psychiatrictimes.com/view/irreversible-monoamine-oxidase-inhibitors-revisited
Wimbiscus M, Kostenko O, Malone D (December 2010). "MAO inhibitors: risks, benefits, and lore". Cleveland Clinic Journal of Medicine. 77 (12): 859–882. doi:10.3949/ccjm.77a.09103. PMID 21147941. https://doi.org/10.3949%2Fccjm.77a.09103
Kandel ER (1991). Principles of Neural Science. East Norwalk, Connecticut: Appleton & Lang. pp. 872–873. ISBN 978-0-8385-8034-9. 978-0-8385-8034-9
Coryell W (2016). "Drug Treatment of Depression". In Porter RS (ed.). The Merck Manual (19th ed.). Whitehouse Station, N.J.: Merck. ISBN 978-0-911910-19-3. 978-0-911910-19-3
Wimbiscus M, Kostenko O, Malone D (December 2010). "MAO inhibitors: risks, benefits, and lore". Cleveland Clinic Journal of Medicine. 77 (12): 859–882. doi:10.3949/ccjm.77a.09103. PMID 21147941. https://doi.org/10.3949%2Fccjm.77a.09103
Picciotto MR, Higley MJ, Mineur YS (October 2012). "Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior". Neuron. 76 (1): 116–129. doi:10.1016/j.neuron.2012.08.036. PMC 3466476. PMID 23040810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466476
Hasselmo ME, Sarter M (January 2011). "Modes and models of forebrain cholinergic neuromodulation of cognition". Neuropsychopharmacology. 36 (1): 52–73. doi:10.1038/npp.2010.104. PMC 2992803. PMID 20668433. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992803
Kandel ER (1991). Principles of Neural Science. East Norwalk, Connecticut: Appleton & Lang. pp. 872–873. ISBN 978-0-8385-8034-9. 978-0-8385-8034-9
Allen MJ, Sabir S, Sharma S (2024). "GABA Receptor". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID 30252380. Retrieved 27 June 2024. http://www.ncbi.nlm.nih.gov/books/NBK526124/
Sigel E, Steinmann ME (November 2012). "Structure, function, and modulation of GABA(A) receptors". The Journal of Biological Chemistry. 287 (48): 40224–40231. doi:10.1074/jbc.R112.386664. PMC 3504738. PMID 23038269. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504738
Sorge R (2020). Dynamics of Pain. Great River. ISBN 978-1-64496-496-5. 978-1-64496-496-5
Nässel DR, Zandawala M (August 2019). "Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior". Progress in Neurobiology. 179: 101607. doi:10.1016/j.pneurobio.2019.02.003. PMID 30905728. /wiki/Doi_(identifier)
Alcedo J, Prahlad V (October 2020). "Neuromodulators: an essential part of survival". Journal of Neurogenetics. 34 (3–4): 475–481. doi:10.1080/01677063.2020.1839066. PMC 7811185. PMID 33170042. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811185
Cottrell GA (15 September 1997). "The First Peptide-Gated Ion Channel". Journal of Experimental Biology. 200 (18): 2377–2386. Bibcode:1997JExpB.200.2377C. doi:10.1242/jeb.200.18.2377. PMID 9343851. /wiki/Bibcode_(identifier)
Rozengurt E (December 1998). "Signal transduction pathways in the mitogenic response to G protein-coupled neuropeptide receptor agonists". Journal of Cellular Physiology. 177 (4): 507–517. doi:10.1002/(SICI)1097-4652(199812)177:4<507::AID-JCP2>3.0.CO;2-K. PMID 10092204. /wiki/Doi_(identifier)
Kandel ER (1991). Principles of Neural Science. East Norwalk, Connecticut: Appleton & Lang. pp. 872–873. ISBN 978-0-8385-8034-9. [verification needed] 978-0-8385-8034-9
Froehlich JC (1 January 1997). "Opioid peptides" (PDF). Alcohol Health and Research World. 21 (2): 132–136. PMC 6826828. PMID 15704349. [verification needed] http://pubs.niaaa.nih.gov/publications/arh21-2/132.pdf
Stern E, Fort TJ, Miller MW, Peskin CS, Brezina V (June 2007). "Decoding modulation of the neuromuscular transform". Neurocomputing. 70 (10): 1753–1758. doi:10.1016/j.neucom.2006.10.117. PMC 2745187. PMID 19763188. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745187
Stern E, Fort TJ, Miller MW, Peskin CS, Brezina V (June 2007). "Decoding modulation of the neuromuscular transform". Neurocomputing. 70 (10): 1753–1758. doi:10.1016/j.neucom.2006.10.117. PMC 2745187. PMID 19763188. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745187
Taber KH, Hurley RA (January 2014). "Volume transmission in the brain: beyond the synapse". The Journal of Neuropsychiatry and Clinical Neurosciences. 26 (1): iv, 1-iv, 4. doi:10.1176/appi.neuropsych.13110351. PMID 24515717. https://doi.org/10.1176%2Fappi.neuropsych.13110351
Castañeda-Hernández GC, Bach-y-Rita P (August 2003). "Volume transmission and pain perception". TheScientificWorldJournal. 3: 677–683. doi:10.1100/tsw.2003.53. PMC 5974734. PMID 12920309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974734
Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD (October 2010). "Influence of phasic and tonic dopamine release on receptor activation". The Journal of Neuroscience. 30 (42): 14273–14283. doi:10.1523/JNEUROSCI.1894-10.2010. PMC 6634758. PMID 20962248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634758
Goto Y, Otani S, Grace AA (October 2007). "The Yin and Yang of dopamine release: a new perspective". Neuropharmacology. 53 (5): 583–587. doi:10.1016/j.neuropharm.2007.07.007. PMC 2078202. PMID 17709119. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2078202
Peña-Ortega F (2012). "Tonic Neuromodulation of the Inspiratory Rhythm Generator". Frontiers in Physiology. 3: 253. doi:10.3389/fphys.2012.00253. PMC 3429030. PMID 22934010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429030
Özçete ÖD, Banerjee A, Kaeser PS (November 2024). "Mechanisms of neuromodulatory volume transmission". Molecular Psychiatry. 29 (11): 3680–3693. doi:10.1038/s41380-024-02608-3. PMC 11540752. PMID 38789677. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540752
"International Neuromodulation Society home page". Retrieved 4 March 2025 from https://www.neuromodulation.com/. https://www.neuromodulation.com/
Val Danilov I (29 November 2024). "The Origin of Natural Neurostimulation: A Narrative Review of Noninvasive Brain Stimulation Techniques". OBM Neurobiology. 08 (4): 1–23. doi:10.21926/obm.neurobiol.2404260. https://doi.org/10.21926%2Fobm.neurobiol.2404260
Huang X, Tao Q, Ren C (2024). "A comprehensive overview of the neural mechanisms of light therapy". Neurosci Bull. 2024; 40: 350-362.
Val Danilov I (29 November 2024). "The Origin of Natural Neurostimulation: A Narrative Review of Noninvasive Brain Stimulation Techniques". OBM Neurobiology. 08 (4): 1–23. doi:10.21926/obm.neurobiol.2404260. https://doi.org/10.21926%2Fobm.neurobiol.2404260
Fernandes F, Oliveira S, Monteiro F, Gasik M, Silva FS, Sousa N, et al. (2024). "Devices used for photobiomodulation of the brain—A comprehensive and systematic review". J NeuroEng Rehabil. 2024; 21: 53.
Val Danilov I (29 November 2024). "The Origin of Natural Neurostimulation: A Narrative Review of Noninvasive Brain Stimulation Techniques". OBM Neurobiology. 08 (4): 1–23. doi:10.21926/obm.neurobiol.2404260. https://doi.org/10.21926%2Fobm.neurobiol.2404260
Val Danilov I (29 November 2024). "The Origin of Natural Neurostimulation: A Narrative Review of Noninvasive Brain Stimulation Techniques". OBM Neurobiology. 08 (4): 1–23. doi:10.21926/obm.neurobiol.2404260. https://doi.org/10.21926%2Fobm.neurobiol.2404260
Wang X, Xie Z, Du G (2024). "Research on the intervention effect of vibroacoustic therapy in the treatment of patients with depression". Int J Ment Health Promot. 2024; 26: 149-160.
Lam HL, Li WT, Laher I, Wong RY. (2020). "Effects of music therapy on patients with dementia—A systematic review". Geriatrics. 2020; 5: 62.
Val Danilov I (29 November 2024). "The Origin of Natural Neurostimulation: A Narrative Review of Noninvasive Brain Stimulation Techniques". OBM Neurobiology. 08 (4): 1–23. doi:10.21926/obm.neurobiol.2404260. https://doi.org/10.21926%2Fobm.neurobiol.2404260
Mihailova S, Medne D, Val Danilov I (January 2025). "Acoustic photonic intellectual neurostimulation (APIN) in dysmenorrhea management: a case study on an adolescent". Brain Stimulation. 18 (1): 510. doi:10.1016/j.brs.2024.12.860. https://doi.org/10.1016%2Fj.brs.2024.12.860
Medne D, Val Danilov I, Mihailova S (January 2025). "The effect of acoustic and photonic intervention combined with mental load on chronic headaches: a case study". Brain Stimulation. 18 (1): 542–543. doi:10.1016/j.brs.2024.12.955. https://doi.org/10.1016%2Fj.brs.2024.12.955
Val Danilov I, Medne D, Mihailova S (January 2025). "Modulating neuroplasticity with acoustic photonic intellectual neurostimulation (APIN): a case study on neurodegenerative disorder". Brain Stimulation. 18 (1): 561. doi:10.1016/j.brs.2024.12.1005. https://doi.org/10.1016%2Fj.brs.2024.12.1005
Krames ES, Hunter Peckham P, Rezai A, Aboelsaad F (2009). "What is Neuromodulation?". Neuromodulation. pp. 3–8. doi:10.1016/B978-0-12-374248-3.00002-1. ISBN 978-0-12-374248-3. Neuroprostheses such as cochlear implants and sacral root stimulators are also commonly included within the definition of neuromodulation. Electrical neuromodulation is electrical stimulation of the brain, spinal cord, peripheral nerves, plexuses of nerves, the autonomic system, and functional electrical stimulation of the muscles, while chemical neuromodulation uses direct placement of chemical agents to neural tissues through utilization of technology of implantation such as epidural or intrathecal delivery systems. 978-0-12-374248-3
"Neuromodulation for Headache". https://www.barrowneuro.org/treatment/neuromodulation-for-headache/
"Disorders Treated with Neuromodulation Therapies | Stony Brook Neurosciences Institute". https://neuro.stonybrookmedicine.edu/neuromodulation/disorderstreated