Here, a state space is a discrete set of configurations of a system or solutions of a combinatorial problem, called states, together with a set of allowed moves linking one state to another. Reconfiguration problems may ask:
Demaine, Erik D.; Demaine, Martin L.; Eisenstat, Sarah; Lubiw, Anna; Winslow, Andrew (2011), "Algorithms for solving Rubik's cubes", Algorithms – ESA 2011: 19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011, Proceedings, Lecture Notes in Computer Science, vol. 6942, Springer, Heidelberg, pp. 689–700, arXiv:1106.5736, doi:10.1007/978-3-642-23719-5_58, ISBN 978-3-642-23718-8, MR 2893242, S2CID 664306 978-3-642-23718-8
Culberson, Joseph (1997), Sokoban is PSPACE-complete, Technical report TR97-02, University of Alberta, Department of Computing Science, doi:10.7939/R3JM23K33, hdl:10048/27119 /wiki/Doi_(identifier)
Pournin, Lionel (2014), "The diameter of associahedra", Advances in Mathematics, 259: 13–42, arXiv:1207.6296, doi:10.1016/j.aim.2014.02.035, MR 3197650 /wiki/Advances_in_Mathematics
Kanj, Iyad; Sedgwick, Eric; Xia, Ge (2017), "Computing the flip distance between triangulations", Discrete & Computational Geometry, 58 (2): 313–344, arXiv:1407.1525, doi:10.1007/s00454-017-9867-x, MR 3679938, S2CID 254033552 /wiki/Discrete_%26_Computational_Geometry
Lubiw, Anna; Pathak, Vinayak (2015), "Flip distance between two triangulations of a point set is NP-complete", Computational Geometry, 49: 17–23, arXiv:1205.2425, doi:10.1016/j.comgeo.2014.11.001, MR 3399985 /wiki/Anna_Lubiw
Aichholzer, Oswin; Mulzer, Wolfgang; Pilz, Alexander (2015), "Flip distance between triangulations of a simple polygon is NP-complete", Discrete & Computational Geometry, 54 (2): 368–389, arXiv:1209.0579, doi:10.1007/s00454-015-9709-7, MR 3372115, S2CID 254037222 /wiki/Discrete_%26_Computational_Geometry
Cereceda, Luis (2007), Mixing graph colourings, doctoral dissertation, London School of Economics. See especially page 109. http://etheses.lse.ac.uk/131/
Johnson, Matthew; Kratsch, Dieter; Kratsch, Stefan; Patel, Viresh; Paulusma, Daniël (2016), "Finding shortest paths between graph colourings" (PDF), Algorithmica, 75 (2): 295–321, doi:10.1007/s00453-015-0009-7, MR 3506195, S2CID 253974066 http://dro.dur.ac.uk/15595/1/15595.pdf
Bonsma, Paul; Cereceda, Luis (2009), "Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances", Theoretical Computer Science, 410 (50): 5215–5226, doi:10.1016/j.tcs.2009.08.023, MR 2573973 /wiki/Doi_(identifier)
van der Zanden, Tom C. (2015), "Parameterized complexity of graph constraint logic", 10th International Symposium on Parameterized and Exact Computation, LIPIcs. Leibniz Int. Proc. Inform., vol. 43, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, pp. 282–293, arXiv:1509.02683, doi:10.4230/LIPIcs.IPEC.2015.282, MR 3452428, S2CID 15959029 /wiki/ArXiv_(identifier)
Hearn, Robert A.; Demaine, Erik D. (2005), "PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation", Theoretical Computer Science, 343 (1–2): 72–96, arXiv:cs/0205005, doi:10.1016/j.tcs.2005.05.008, MR 2168845, S2CID 656067 /wiki/Bob_Hearn