A Diophantine equation P ( x ) = 0 {\displaystyle P(\mathbf {x} )=0} is called partition regular if the collection of all infinite subsets of N {\displaystyle \mathbb {N} } containing a solution is partition regular. Rado's theorem characterises exactly which systems of linear Diophantine equations A x = 0 {\displaystyle \mathbf {A} \mathbf {x} =\mathbf {0} } are partition regular. Much progress has been made recently on classifying nonlinear Diophantine equations.78
Nash-Williams, C. St. J. A. (1965). "On well-quasi-ordering transfinite sequences". Mathematical Proceedings of the Cambridge Philosophical Society. 61 (1): 33–39. Bibcode:1965PCPS...61...33N. doi:10.1017/S0305004100038603. /wiki/Crispin_St._J._A._Nash-Williams ↩
Brown, Thomas Craig (1971). "An interesting combinatorial method in the theory of locally finite semigroups". Pacific Journal of Mathematics. 36 (2): 285–289. doi:10.2140/pjm.1971.36.285. http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1102971066 ↩
Sanders, Jon Henry (1968). A Generalization of Schur's Theorem, Doctoral Dissertation (PhD). Yale University. ↩
Deuber, Walter (1973). "Partitionen und lineare Gleichungssysteme". Mathematische Zeitschrift. 133 (2): 109–123. doi:10.1007/BF01237897. /wiki/Doi_(identifier) ↩
Hindman, Neil (1974). "Finite sums from sequences within cells of a partition of N {\displaystyle N} ". Journal of Combinatorial Theory. Series A. 17 (1): 1–11. doi:10.1016/0097-3165(74)90023-5. https://doi.org/10.1016%2F0097-3165%2874%2990023-5 ↩
Hindman, Neil; Strauss, Dona (1998). Algebra in the Stone–Čech compactification. De Gruyter. doi:10.1515/9783110258356. ISBN 978-3-11-025623-9. 978-3-11-025623-9 ↩
Di Nasso, Mauro; Luperi Baglini, Lorenzo (January 2018). "Ramsey properties of nonlinear Diophantine equations". Advances in Mathematics. 324: 84–117. arXiv:1606.02056. doi:10.1016/j.aim.2017.11.003. ISSN 0001-8708. https://doi.org/10.1016%2Fj.aim.2017.11.003 ↩
Barrett, Jordan Mitchell; Lupini, Martino; Moreira, Joel (May 2021). "On Rado conditions for nonlinear Diophantine equations". European Journal of Combinatorics. 94 103277. arXiv:1907.06163. doi:10.1016/j.ejc.2020.103277. ISSN 0195-6698. https://dx.doi.org/10.1016/j.ejc.2020.103277 ↩