Modeling of the common representation of the Dalitz plot can be complicated due to its nontrivial shape. One can however introduce such kinematic variables so that Dalitz plot gets a rectangular (or squared) shape:9
m ′ ( 1 , 2 ) = 1 π arccos ( 2 ∗ m ( 1 , 2 ) − m ( 1 , 2 ) m i n m ( 1 , 2 ) m a x − m ( 1 , 2 ) m i n − 1 ) {\displaystyle m'(1,2)={\frac {1}{\pi }}\arccos \left(2*{\frac {m(1,2)-m(1,2)_{min}}{m(1,2)_{max}-m(1,2)_{min}}}-1\right)} ;
θ ′ ( 1 , 2 ) = 1 π θ ( 1 , 2 ) {\displaystyle \theta '(1,2)={\frac {1}{\pi }}\theta (1,2)} ;
where m ( 1 , 2 ) {\displaystyle m(1,2)} is the invariant mass of particles 1 and 2 in a given decay event; m ( 1 , 2 ) m a x {\displaystyle m(1,2)_{max}} and m ( 1 , 2 ) m i n {\displaystyle m(1,2)_{min}} are its maximal and minimal kinematically allowed values, while θ ( 1 , 2 ) {\displaystyle \theta (1,2)} is the angle between particles 1 and 3 in the rest frame of particles 1 and 2. This technique is commonly called "Square Dalitz plot" (SDP).
R. H. Dalitz (1953). "On the analysis of τ-meson data and the nature of the τ-meson". Philosophical Magazine. 44 (357): 1068–1080. doi:10.1080/14786441008520365. /wiki/Philosophical_Magazine ↩
R. H. Dalitz (1954). "Decay of τ mesons of known charge". Physical Review. 94 (4): 1046–1051. Bibcode:1954PhRv...94.1046D. doi:10.1103/PhysRev.94.1046. /wiki/Physical_Review ↩
Close, Frank (24 January 2006). "Richard Dalitz: Physicist who mapped the behaviour of exotic particles and argued for the reality of quarks". The Guardian. https://www.theguardian.com/obituaries/story/0,3604,1693226,00.html ↩
P. Pakhlov and T. Uglov, Flavor physics at Super B-factories era, J. Phys.: Conf. Ser. 675, 022009 (2016). ↩
E. Fabri (1954). "A study of τ-meson decay". Nuovo Cimento. 11 (5): 479–491. Bibcode:1954NCim...11..479F. doi:10.1007/BF02781042. S2CID 120859580. /wiki/Nuovo_Cimento ↩
M. Schulz; et al. (2007). "Four-particle Dalitz plots to visualize atomic break-up processes". Journal of Physics B. 40 (15): 3091–3099. Bibcode:2007JPhB...40.3091S. doi:10.1088/0953-4075/40/15/009. /wiki/Journal_of_Physics_B ↩
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M. (2014-10-14). "Dalitz plot analysis of B s 0 → D ¯ 0 K − π + decays". Physical Review D. Vol. 90, no. 7. p. 072003. doi:10.1103/PhysRevD.90.072003. ISSN 1550-7998. Retrieved 2021-02-19. https://link.aps.org/doi/10.1103/PhysRevD.90.072003 ↩