Placing the triangle in the complex plane, let the triangle ABC with unit circumcircle have vertices whose locations have complex coordinates a, b, c, and let P with complex coordinates p be a point on the circumcircle. The Simson line is the set of points z satisfying5: Proposition 4
where an overbar indicates complex conjugation.
It suffices to show that ∠ N M P + ∠ P M L = 180 ∘ {\displaystyle \angle NMP+\angle PML=180^{\circ }} .
P C A B {\displaystyle PCAB} is a cyclic quadrilateral, so ∠ P B A + ∠ A C P = ∠ P B N + ∠ A C P = 180 ∘ {\displaystyle \angle PBA+\angle ACP=\angle PBN+\angle ACP=180^{\circ }} . P M N B {\displaystyle PMNB} is a cyclic quadrilateral (since ∠ P M B = ∠ P N B = 90 ∘ {\displaystyle \angle PMB=\angle PNB=90^{\circ }} ), so ∠ P B N + ∠ N M P = 180 ∘ {\displaystyle \angle PBN+\angle NMP=180^{\circ }} . Hence ∠ N M P = ∠ A C P {\displaystyle \angle NMP=\angle ACP} . Now P L C M {\displaystyle PLCM} is cyclic, so ∠ P M L = ∠ P C L = 180 ∘ − ∠ A C P {\displaystyle \angle PML=\angle PCL=180^{\circ }-\angle ACP} .
Therefore ∠ N M P + ∠ P M L = ∠ A C P + ( 180 ∘ − ∠ A C P ) = 180 ∘ {\displaystyle \angle NMP+\angle PML=\angle ACP+(180^{\circ }-\angle ACP)=180^{\circ }} .
H.S.M. Coxeter and S.L. Greitzer, Geometry revisited, Math. Assoc. America, 1967: p.41. ↩
"Gibson History 7 - Robert Simson". MacTutor History of Mathematics archive. 2008-01-30. http://www-groups.dcs.st-and.ac.uk/Extras/Gibson_history_7.html ↩
"William Wallace". MacTutor History of Mathematics archive. http://www-groups.dcs.st-and.ac.uk/Biographies/Wallace.html ↩
Clawson, J. W. (1919). "A Theorem in the Geometry of the Triangle". The American Mathematical Monthly. 26 (2): 59–62. JSTOR 2973140. /wiki/JSTOR_(identifier) ↩
Todor Zaharinov, "The Simson triangle and its properties", Forum Geometricorum 17 (2017), 373--381. http://forumgeom.fau.edu/FG2017volume17/FG201736.pdf http://forumgeom.fau.edu/FG2017volume17/FG201736.pdf ↩
Daniela Ferrarello, Maria Flavia Mammana, and Mario Pennisi, "Pedal Polygons", Forum Geometricorum 13 (2013) 153–164: Theorem 4. http://forumgeom.fau.edu/FG2013volume13/FG201316.pdf ↩
Olga Radko and Emmanuel Tsukerman, "The Perpendicular Bisector Construction, the Isoptic point, and the Simson Line of a Quadrilateral", Forum Geometricorum 12 (2012). [1] http://forumgeom.fau.edu/FG2012volume12/FG201214.pdf ↩
Tsukerman, Emmanuel (2013). "On Polygons Admitting a Simson Line as Discrete Analogs of Parabolas" (PDF). Forum Geometricorum. 13: 197–208. http://forumgeom.fau.edu/FG2013volume13/FG201321.pdf ↩
"A Generalization of Simson Line". Cut-the-knot. April 2015. http://www.cut-the-knot.org/m/Geometry/GeneralizationSimson.shtml ↩
Nguyen Van Linh (2016), "Another synthetic proof of Dao's generalization of the Simson line theorem" (PDF), Forum Geometricorum, 16: 57–61, archived from the original (PDF) on 2023-10-23 https://web.archive.org/web/20231023035726/https://forumgeom.fau.edu/FG2016volume16/FG201608.pdf ↩
Nguyen Le Phuoc and Nguyen Chuong Chi (2016). 100.24 A synthetic proof of Dao's generalisation of the Simson line theorem. The Mathematical Gazette, 100, pp 341-345. doi:10.1017/mag.2016.77. The Mathematical Gazette http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10362951&fileId=S0025557216000772 ↩
Smith, Geoff (2015), "99.20 A projective Simson line", The Mathematical Gazette, 99 (545): 339–341, doi:10.1017/mag.2015.47, S2CID 124965348 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9834854&fulltextType=XX&fileId=S0025557215020549 ↩