The graphs of maximum degree
d
{\displaystyle d}
have thickness at most
⌈
d
/
2
⌉
{\displaystyle \lceil d/2\rceil }
. This cannot be improved: for a
d
{\displaystyle d}
-regular graph with girth at least
2
d
{\displaystyle 2d}
, the high girth forces any planar subgraph to be sparse, causing its thickness to be exactly
⌈
d
/
2
⌉
{\displaystyle \lceil d/2\rceil }
.
Graphs of thickness
t
{\displaystyle t}
with
n
{\displaystyle n}
vertices have at most
t
(
3
n
−
6
)
{\displaystyle t(3n-6)}
edges. Because this gives them average degree less than
6
t
{\displaystyle 6t}
, their degeneracy is at most
6
t
−
1
{\displaystyle 6t-1}
and their chromatic number is at most
6
t
{\displaystyle 6t}
. Here, the degeneracy can be defined as the maximum, over subgraphs of the given graph, of the minimum degree within the subgraph. In the other direction, if a graph has degeneracy
D
{\displaystyle D}
then its arboricity and thickness are at most
D
{\displaystyle D}
. One can find an ordering of the vertices of the graph in which each vertex has at most
D
{\displaystyle D}
neighbors that come later than it in the ordering, and assigning these edges to
D
{\displaystyle D}
distinct subgraphs produces a partition of the graph into
D
{\displaystyle D}
trees, which are planar graphs.
Even in the case
t
=
2
{\displaystyle t=2}
, the precise value of the chromatic number is unknown; this is Gerhard Ringel's Earth–Moon problem. An example of Thom Sulanke shows that, for
t
=
2
{\displaystyle t=2}
, at least 9 colors are needed.
A different graph invariant, the rectilinear thickness or geometric thickness of a graph G, counts the smallest number of planar graphs into which G can be decomposed subject to the restriction that all of these graphs can be drawn simultaneously with straight edges. The book thickness adds an additional restriction, that all of the vertices be drawn in convex position, forming a circular layout of the graph. However, in contrast to the situation for arboricity and degeneracy, no two of these three thickness parameters are always within a constant factor of each other.
Tutte, W. T. (1963), "The thickness of a graph", Indag. Math., 66: 567–577, doi:10.1016/S1385-7258(63)50055-9, MR 0157372. /wiki/W._T._Tutte
Mutzel, Petra; Odenthal, Thomas; Scharbrodt, Mark (1998), "The thickness of graphs: a survey" (PDF), Graphs and Combinatorics, 14 (1): 59–73, CiteSeerX 10.1.1.34.6528, doi:10.1007/PL00007219, MR 1617664, S2CID 31670574. /wiki/Petra_Mutzel
Christian A. Duncan, On Graph Thickness, Geometric Thickness, and Separator Theorems, CCCG 2009, Vancouver, BC, August 17–19, 2009 https://cccg.ca/proceedings/2009/cccg09_04.pdf
Ringel, Gerhard (1959), Färbungsprobleme auf Flächen und Graphen, Mathematische Monographien, vol. 2, Berlin: VEB Deutscher Verlag der Wissenschaften, MR 0109349 /wiki/Gerhard_Ringel
Mäkinen, Erkki; Poranen, Timo (2012), "An annotated bibliography on the thickness, outerthickness, and arboricity of a graph", Missouri J. Math. Sci., 24 (1): 76–87, doi:10.35834/mjms/1337950501, S2CID 117703458 https://projecteuclid.org/euclid.mjms/1337950501
Christian A. Duncan, On Graph Thickness, Geometric Thickness, and Separator Theorems, CCCG 2009, Vancouver, BC, August 17–19, 2009 https://cccg.ca/proceedings/2009/cccg09_04.pdf
Mutzel, Petra; Odenthal, Thomas; Scharbrodt, Mark (1998), "The thickness of graphs: a survey" (PDF), Graphs and Combinatorics, 14 (1): 59–73, CiteSeerX 10.1.1.34.6528, doi:10.1007/PL00007219, MR 1617664, S2CID 31670574. /wiki/Petra_Mutzel
Mutzel, Odenthal & Scharbrodt (1998), Theorem 3.2. - Mutzel, Petra; Odenthal, Thomas; Scharbrodt, Mark (1998), "The thickness of graphs: a survey" (PDF), Graphs and Combinatorics, 14 (1): 59–73, CiteSeerX 10.1.1.34.6528, doi:10.1007/PL00007219, MR 1617664, S2CID 31670574 https://domino.mpi-inf.mpg.de/internet/reports.nsf/efc044f1568a0058c125642e0064c817/9097519627562713c125630a0047835e/$FILE/MPI-I-96-1-009.pdf
Alekseev, V. B.; Gončakov, V. S. (1976), "The thickness of an arbitrary complete graph", Mat. Sb., New Series, 101 (143): 212–230, Bibcode:1976SbMat..30..187A, doi:10.1070/SM1976v030n02ABEH002267, MR 0460162. /wiki/Matematicheskii_Sbornik
Mutzel, Odenthal & Scharbrodt (1998), Theorem 3.4. - Mutzel, Petra; Odenthal, Thomas; Scharbrodt, Mark (1998), "The thickness of graphs: a survey" (PDF), Graphs and Combinatorics, 14 (1): 59–73, CiteSeerX 10.1.1.34.6528, doi:10.1007/PL00007219, MR 1617664, S2CID 31670574 https://domino.mpi-inf.mpg.de/internet/reports.nsf/efc044f1568a0058c125642e0064c817/9097519627562713c125630a0047835e/$FILE/MPI-I-96-1-009.pdf
Beineke, Lowell W.; Harary, Frank; Moon, John W. (1964), "On the thickness of the complete bipartite graph", Mathematical Proceedings of the Cambridge Philosophical Society, 60 (1): 1–5, Bibcode:1964PCPS...60....1B, doi:10.1017/s0305004100037385, MR 0158388, S2CID 122829092. /wiki/L._W._Beineke
Mutzel, Petra; Odenthal, Thomas; Scharbrodt, Mark (1998), "The thickness of graphs: a survey" (PDF), Graphs and Combinatorics, 14 (1): 59–73, CiteSeerX 10.1.1.34.6528, doi:10.1007/PL00007219, MR 1617664, S2CID 31670574. /wiki/Petra_Mutzel
Dean, Alice M.; Hutchinson, Joan P.; Scheinerman, Edward R. (1991), "On the thickness and arboricity of a graph", Journal of Combinatorial Theory, Series B, 52 (1): 147–151, doi:10.1016/0095-8956(91)90100-X, MR 1109429. /wiki/Joan_Hutchinson
Halton, John H. (1991), "On the thickness of graphs of given degree", Information Sciences, 54 (3): 219–238, doi:10.1016/0020-0255(91)90052-V, MR 1079441 /wiki/Doi_(identifier)
Sýkora, Ondrej; Székely, László A.; Vrt'o, Imrich (2004), "A note on Halton's conjecture", Information Sciences, 164 (1–4): 61–64, doi:10.1016/j.ins.2003.06.008, MR 2076570 /wiki/Doi_(identifier)
Gethner, Ellen (2018), "To the Moon and beyond", in Gera, Ralucca; Haynes, Teresa W.; Hedetniemi, Stephen T. (eds.), Graph Theory: Favorite Conjectures and Open Problems, II, Problem Books in Mathematics, Springer International Publishing, pp. 115–133, doi:10.1007/978-3-319-97686-0_11, ISBN 978-3-319-97684-6, MR 3930641 978-3-319-97684-6
Brass, Peter; Cenek, Eowyn; Duncan, Christian A.; Efrat, Alon; Erten, Cesim; Ismailescu, Dan P.; Kobourov, Stephen G.; Lubiw, Anna; Mitchell, Joseph S. B. (2007), "On simultaneous planar graph embeddings", Computational Geometry, 36 (2): 117–130, doi:10.1016/j.comgeo.2006.05.006, MR 2278011. /wiki/Anna_Lubiw
Eppstein, David (2004), "Separating thickness from geometric thickness", Towards a theory of geometric graphs, Contemp. Math., vol. 342, Amer. Math. Soc., Providence, RI, pp. 75–86, arXiv:math/0204252, doi:10.1090/conm/342/06132, ISBN 978-0-8218-3484-8, MR 2065254. 978-0-8218-3484-8
Mansfield, Anthony (1983), "Determining the thickness of graphs is NP-hard", Mathematical Proceedings of the Cambridge Philosophical Society, 93 (1): 9–23, Bibcode:1983MPCPS..93....9M, doi:10.1017/S030500410006028X, MR 0684270, S2CID 122028023. /wiki/Mathematical_Proceedings_of_the_Cambridge_Philosophical_Society