In a similar procedure to how the normal distribution can be derived using the standard Boltzmann–Gibbs entropy or Shannon entropy, the q-Gaussian can be derived from a maximization of the Tsallis entropy subject to the appropriate constraints.34
See q-Gaussian.
See q-exponential distribution
See q-Weibull distribution
Tsallis, C. (2009) "Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years", Braz. J. Phys, 39, 337–356 ↩
Box, George E. P.; Cox, D. R. (1964). "An analysis of transformations". Journal of the Royal Statistical Society, Series B. 26 (2): 211–252. JSTOR 2984418. MR 0192611. /wiki/George_E._P._Box ↩
Umarov, Sabir; Tsallis, Constantino; Steinberg, Stanly (2008-12-01). "On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics". Milan Journal of Mathematics. 76 (1): 307–328. doi:10.1007/s00032-008-0087-y. ISSN 1424-9294. S2CID 55967725. https://doi.org/10.1007/s00032-008-0087-y ↩
Prato, Domingo; Tsallis, Constantino (1999-08-01). "Nonextensive foundation of Lévy distributions". Physical Review E. 60 (2): 2398–2401. Bibcode:1999PhRvE..60.2398P. doi:10.1103/PhysRevE.60.2398. ISSN 1063-651X. PMID 11970038. https://link.aps.org/doi/10.1103/PhysRevE.60.2398 ↩