The modulus of convexity of a Banach space (X, ||⋅||) is the function δ : [0, 2] → [0, 1] defined by
where S denotes the unit sphere of (X, || ||). In the definition of δ(ε), one can as well take the infimum over all vectors x, y in X such that ǁxǁ, ǁyǁ ≤ 1 and ǁx − yǁ ≥ ε.1
The characteristic of convexity of the space (X, || ||) is the number ε0 defined by
These notions are implicit in the general study of uniform convexity by J. A. Clarkson (Clarkson (1936); this is the same paper containing the statements of Clarkson's inequalities). The term "modulus of convexity" appears to be due to M. M. Day.2
The modulus of convexity is known for the LP spaces.7 If 1 < p ≤ 2 {\displaystyle 1<p\leq 2} , then it satisfies the following implicit equation:
Knowing that δ p ( ε + ) = 0 , {\displaystyle \delta _{p}(\varepsilon +)=0,} one can suppose that δ p ( ε ) = a 0 ε + a 1 ε 2 + ⋯ {\displaystyle \delta _{p}(\varepsilon )=a_{0}\varepsilon +a_{1}\varepsilon ^{2}+\cdots } . Substituting this into the above, and expanding the left-hand-side as a Taylor series around ε = 0 {\displaystyle \varepsilon =0} , one can calculate the a i {\displaystyle a_{i}} coefficients:
For 2 < p < ∞ {\displaystyle 2<p<\infty } , one has the explicit expression
Therefore, δ p ( ε ) = 1 p 2 p ε p + ⋯ {\displaystyle \delta _{p}(\varepsilon )={\frac {1}{p2^{p}}}\varepsilon ^{p}+\cdots } .
p. 60 in Lindenstrauss & Tzafriri (1979). - Lindenstrauss, Joram; Tzafriri, Lior (1979), Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Berlin-New York: Springer-Verlag, pp. x+243, ISBN 3-540-08888-1 ↩
Day, Mahlon (1944), "Uniform convexity in factor and conjugate spaces", Annals of Mathematics, 2, 45 (2): 375–385, doi:10.2307/1969275, JSTOR 1969275 /wiki/Doi_(identifier) ↩
Lemma 1.e.8, p. 66 in Lindenstrauss & Tzafriri (1979). - Lindenstrauss, Joram; Tzafriri, Lior (1979), Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Berlin-New York: Springer-Verlag, pp. x+243, ISBN 3-540-08888-1 ↩
see Remarks, p. 67 in Lindenstrauss & Tzafriri (1979). - Lindenstrauss, Joram; Tzafriri, Lior (1979), Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Berlin-New York: Springer-Verlag, pp. x+243, ISBN 3-540-08888-1 ↩
see Proposition 1.e.6, p. 65 and Lemma 1.e.7, 1.e.8, p. 66 in Lindenstrauss & Tzafriri (1979). - Lindenstrauss, Joram; Tzafriri, Lior (1979), Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Berlin-New York: Springer-Verlag, pp. x+243, ISBN 3-540-08888-1 ↩
see Pisier, Gilles (1975), "Martingales with values in uniformly convex spaces", Israel Journal of Mathematics, 20 (3–4): 326–350, doi:10.1007/BF02760337, MR 0394135, S2CID 120947324 . /wiki/Gilles_Pisier ↩
Hanner, Olof (1955), "On the uniform convexity of L p {\displaystyle L^{p}} and ℓ p {\displaystyle \ell ^{p}} ", Arkiv för Matematik, 3: 239–244, doi:10.1007/BF02589410 /wiki/Doi_(identifier) ↩