The heptagonal triangle's nine-point center is also its first Brocard point.1: Propos. 12
The second Brocard point lies on the nine-point circle.2: p. 19
The circumcenter and the Fermat points of a heptagonal triangle form an equilateral triangle.3: Thm. 22
The distance between the circumcenter O and the orthocenter H is given by4: p. 19
where R is the circumradius. The squared distance from the incenter I to the orthocenter is5: p. 19
where r is the inradius.
The two tangents from the orthocenter to the circumcircle are mutually perpendicular.6: p. 19
The heptagonal triangle's sides a < b < c coincide respectively with the regular heptagon's side, shorter diagonal, and longer diagonal. They satisfy7: Lemma 1
(the latter8: p. 13 being the optic equation) and hence
and9: Coro. 2
Thus –b/c, c/a, and a/b all satisfy the cubic equation
However, no algebraic expressions with purely real terms exist for the solutions of this equation, because it is an example of casus irreducibilis.
The approximate relation of the sides is
We also have1011
satisfy the cubic equation
We also have12
We also have13
We also have14: p. 14
and15: p. 15
We also have16
The altitudes ha, hb, and hc satisfy
and
The altitude from side b (opposite angle B) is half the internal angle bisector w A {\displaystyle w_{A}} of A:19: p. 19
Here angle A is the smallest angle, and B is the second smallest.
We have these properties of the internal angle bisectors w A , w B , {\displaystyle w_{A},w_{B},} and w C {\displaystyle w_{C}} of angles A, B, and C respectively:20: p. 16
The triangle's area is21
where R is the triangle's circumradius.
We have22: p. 12
We also have23
The ratio r /R of the inradius to the circumradius is the positive solution of the cubic equation24
In addition,25: p. 15
We also have26
In general for all integer n,
where
We also have27
We also have28
The exradius ra corresponding to side a equals the radius of the nine-point circle of the heptagonal triangle.29: p. 15
The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one).30: pp. 12–13
The rectangular hyperbola through A , B , C , G = X ( 2 ) , H = X ( 4 ) {\displaystyle A,B,C,G=X(2),H=X(4)} has the following properties:
The various trigonometric identities associated with the heptagonal triangle include these:31: pp. 13–14 3233
A = π 7 cos A = b 2 a B = 2 π 7 cos B = c 2 b C = 4 π 7 cos C = − a 2 c {\displaystyle {\begin{aligned}A&={\frac {\pi }{7}}\\[6pt]\cos A&={\frac {b}{2a}}\end{aligned}}\quad {\begin{aligned}B&={\frac {2\pi }{7}}\\[6pt]\cos B&={\frac {c}{2b}}\end{aligned}}\quad {\begin{aligned}C&={\frac {4\pi }{7}}\\[6pt]\cos C&=-{\frac {a}{2c}}\end{aligned}}} 34: Proposition 10
sin A × sin B × sin C = 7 8 sin A − sin B − sin C = − 7 2 cos A × cos B × cos C = − 1 8 tan A × tan B × tan C = − 7 tan A + tan B + tan C = − 7 cot A + cot B + cot C = 7 sin 2 A × sin 2 B × sin 2 C = 7 64 sin 2 A + sin 2 B + sin 2 C = 7 4 cos 2 A + cos 2 B + cos 2 C = 5 4 tan 2 A + tan 2 B + tan 2 C = 21 sec 2 A + sec 2 B + sec 2 C = 24 csc 2 A + csc 2 B + csc 2 C = 8 cot 2 A + cot 2 B + cot 2 C = 5 sin 4 A + sin 4 B + sin 4 C = 21 16 cos 4 A + cos 4 B + cos 4 C = 13 16 sec 4 A + sec 4 B + sec 4 C = 416 csc 4 A + csc 4 B + csc 4 C = 32 {\displaystyle {\begin{array}{rcccccl}\sin A\!&\!\times \!&\!\sin B\!&\!\times \!&\!\sin C\!&\!=\!&\!{\frac {\sqrt {7}}{8}}\\[2pt]\sin A\!&\!-\!&\!\sin B\!&\!-\!&\!\sin C\!&\!=\!&\!-{\frac {\sqrt {7}}{2}}\\[2pt]\cos A\!&\!\times \!&\!\cos B\!&\!\times \!&\!\cos C\!&\!=\!&\!-{\frac {1}{8}}\\[2pt]\tan A\!&\!\times \!&\!\tan B\!&\!\times \!&\!\tan C\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\tan A\!&\!+\!&\!\tan B\!&\!+\!&\!\tan C\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\cot A\!&\!+\!&\!\cot B\!&\!+\!&\!\cot C\!&\!=\!&\!{\sqrt {7}}\\[8pt]\sin ^{2}\!A\!&\!\times \!&\!\sin ^{2}\!B\!&\!\times \!&\!\sin ^{2}\!C\!&\!=\!&\!{\frac {7}{64}}\\[2pt]\sin ^{2}\!A\!&\!+\!&\!\sin ^{2}\!B\!&\!+\!&\!\sin ^{2}\!C\!&\!=\!&\!{\frac {7}{4}}\\[2pt]\cos ^{2}\!A\!&\!+\!&\!\cos ^{2}\!B\!&\!+\!&\!\cos ^{2}\!C\!&\!=\!&\!{\frac {5}{4}}\\[2pt]\tan ^{2}\!A\!&\!+\!&\!\tan ^{2}\!B\!&\!+\!&\!\tan ^{2}\!C\!&\!=\!&\!21\\[2pt]\sec ^{2}\!A\!&\!+\!&\!\sec ^{2}\!B\!&\!+\!&\!\sec ^{2}\!C\!&\!=\!&\!24\\[2pt]\csc ^{2}\!A\!&\!+\!&\!\csc ^{2}\!B\!&\!+\!&\!\csc ^{2}\!C\!&\!=\!&\!8\\[2pt]\cot ^{2}\!A\!&\!+\!&\!\cot ^{2}\!B\!&\!+\!&\!\cot ^{2}\!C\!&\!=\!&\!5\\[8pt]\sin ^{4}\!A\!&\!+\!&\!\sin ^{4}\!B\!&\!+\!&\!\sin ^{4}\!C\!&\!=\!&\!{\frac {21}{16}}\\[2pt]\cos ^{4}\!A\!&\!+\!&\!\cos ^{4}\!B\!&\!+\!&\!\cos ^{4}\!C\!&\!=\!&\!{\frac {13}{16}}\\[2pt]\sec ^{4}\!A\!&\!+\!&\!\sec ^{4}\!B\!&\!+\!&\!\sec ^{4}\!C\!&\!=\!&\!416\\[2pt]\csc ^{4}\!A\!&\!+\!&\!\csc ^{4}\!B\!&\!+\!&\!\csc ^{4}\!C\!&\!=\!&\!32\\[8pt]\end{array}}}
tan A − 4 sin B = − 7 tan B − 4 sin C = − 7 tan C + 4 sin A = − 7 {\displaystyle {\begin{array}{ccccl}\tan A\!&\!-\!&\!4\sin B\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\tan B\!&\!-\!&\!4\sin C\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\tan C\!&\!+\!&\!4\sin A\!&\!=\!&\!-{\sqrt {7}}\end{array}}} 3536
cot 2 A = 1 − 2 tan C 7 cot 2 B = 1 − 2 tan A 7 cot 2 C = 1 − 2 tan B 7 {\displaystyle {\begin{aligned}\cot ^{2}\!A&=1-{\frac {2\tan C}{\sqrt {7}}}\\[2pt]\cot ^{2}\!B&=1-{\frac {2\tan A}{\sqrt {7}}}\\[2pt]\cot ^{2}\!C&=1-{\frac {2\tan B}{\sqrt {7}}}\end{aligned}}} 37
cos A = − 1 2 + 4 7 × sin 3 C sec A = 2 + 4 × cos C sec A = 6 − 8 × sin 2 B sec A = 4 − 16 7 × sin 3 B cot A = 7 + 8 7 × sin 2 B cot A = 3 7 + 4 7 × cos B sin 2 A = 1 2 + 1 2 × cos B cos 2 A = 3 4 + 2 7 × sin 3 A cot 2 A = 3 + 8 7 × sin A sin 3 A = − 7 8 + 7 4 × cos B csc 3 A = − 6 7 + 2 7 × tan 2 C {\displaystyle {\begin{array}{rcccccl}\cos A\!&\!=\!&\!{\frac {-1}{2}}\!&\!+\!&\!{\frac {4}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{3}\!C\\[2pt]\sec A\!&\!=\!&\!2\!&\!+\!&\!4\!&\!\times \!&\!\cos C\\[4pt]\sec A\!&\!=\!&\!6\!&\!-\!&\!8\!&\!\times \!&\!\sin ^{2}\!B\\[4pt]\sec A\!&\!=\!&\!4\!&\!-\!&\!{\frac {16}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{3}\!B\\[2pt]\cot A\!&\!=\!&\!{\sqrt {7}}\!&\!+\!&\!{\frac {8}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{2}\!B\\[2pt]\cot A\!&\!=\!&\!{\frac {3}{\sqrt {7}}}\!&\!+\!&\!{\frac {4}{\sqrt {7}}}\!&\!\times \!&\!\cos B\\[2pt]\sin ^{2}\!A\!&\!=\!&\!{\frac {1}{2}}\!&\!+\!&\!{\frac {1}{2}}\!&\!\times \!&\!\cos B\\[2pt]\cos ^{2}\!A\!&\!=\!&\!{\frac {3}{4}}\!&\!+\!&\!{\frac {2}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{3}\!A\\[2pt]\cot ^{2}\!A\!&\!=\!&\!3\!&\!+\!&\!{\frac {8}{\sqrt {7}}}\!&\!\times \!&\!\sin A\\[2pt]\sin ^{3}\!A\!&\!=\!&\!{\frac {-{\sqrt {7}}}{8}}\!&\!+\!&\!{\frac {\sqrt {7}}{4}}\!&\!\times \!&\!\cos B\\[2pt]\csc ^{3}\!A\!&\!=\!&\!{\frac {-6}{\sqrt {7}}}\!&\!+\!&\!{\frac {2}{\sqrt {7}}}\!&\!\times \!&\!\tan ^{2}\!C\end{array}}} 38
sin A sin B − sin B sin C + sin C sin A = 0 {\displaystyle \sin A\sin B-\sin B\sin C+\sin C\sin A=0} sin 3 B sin C − sin 3 C sin A − sin 3 A sin B = 0 sin B sin 3 C − sin C sin 3 A − sin A sin 3 B = 7 2 4 sin 4 B sin C − sin 4 C sin A + sin 4 A sin B = 0 sin B sin 4 C + sin C sin 4 A − sin A sin 4 B = 7 7 2 5 {\displaystyle {\begin{aligned}\sin ^{3}\!B\sin C-\sin ^{3}\!C\sin A-\sin ^{3}\!A\sin B&=0\\[3pt]\sin B\sin ^{3}\!C-\sin C\sin ^{3}\!A-\sin A\sin ^{3}\!B&={\frac {7}{2^{4}\!}}\\[2pt]\sin ^{4}\!B\sin C-\sin ^{4}\!C\sin A+\sin ^{4}\!A\sin B&=0\\[2pt]\sin B\sin ^{4}\!C+\sin C\sin ^{4}\!A-\sin A\sin ^{4}\!B&={\frac {7{\sqrt {7}}}{2^{5}}}\end{aligned}}} sin 11 B sin 3 C − sin 11 C sin 3 A − sin 11 A sin 3 B = 0 sin 3 B sin 11 C − sin 3 C sin 11 A − sin 3 A sin 11 B = 7 3 ⋅ 17 2 14 {\displaystyle {\begin{aligned}\sin ^{11}\!B\sin ^{3}\!C-\sin ^{11}\!C\sin ^{3}\!A-\sin ^{11}\!A\sin ^{3}\!B&=0\\[2pt]\sin ^{3}\!B\sin ^{11}\!C-\sin ^{3}\!C\sin ^{11}\!A-\sin ^{3}\!A\sin ^{11}\!B&={\frac {7^{3}\cdot 17}{2^{14}}}\end{aligned}}} 39
The cubic equation 64 y 3 − 112 y 2 + 56 y − 7 = 0 {\displaystyle 64y^{3}-112y^{2}+56y-7=0} has solutions40: p. 14 sin 2 A , sin 2 B , sin 2 C . {\displaystyle \sin ^{2}\!A,\ \sin ^{2}\!B,\ \sin ^{2}\!C.}
The positive solution of the cubic equation x 3 + x 2 − 2 x − 1 = 0 {\displaystyle x^{3}+x^{2}-2x-1=0} equals 2 cos B . {\displaystyle 2\cos B.} 41: p. 186–187
The roots of the cubic equation x 3 − 7 2 x 2 + 7 8 = 0 {\displaystyle x^{3}-{\tfrac {\sqrt {7}}{2}}x^{2}+{\tfrac {\sqrt {7}}{8}}=0} are42 sin 2 A , sin 2 B , sin 2 C . {\displaystyle \sin 2A,\ \sin 2B,\ \sin 2C.}
The roots of the cubic equation x 3 − 7 2 x 2 + 7 8 = 0 {\displaystyle x^{3}-{\tfrac {\sqrt {7}}{2}}x^{2}+{\tfrac {\sqrt {7}}{8}}=0} are − sin A , sin B , sin C . {\displaystyle -\sin A,\ \sin B,\ \sin C.}
The roots of the cubic equation x 3 + 1 2 x 2 − 1 2 x − 1 8 = 0 {\displaystyle x^{3}+{\tfrac {1}{2}}x^{2}-{\tfrac {1}{2}}x-{\tfrac {1}{8}}=0} are − cos A , cos B , cos C . {\displaystyle -\cos A,\ \cos B,\ \cos C.}
The roots of the cubic equation x 3 + 7 x 2 − 7 x + 7 = 0 {\displaystyle x^{3}+{\sqrt {7}}x^{2}-7x+{\sqrt {7}}=0} are tan A , tan B , tan C . {\displaystyle \tan A,\ \tan B,\ \tan C.}
The roots of the cubic equation x 3 − 21 x 2 + 35 x − 7 = 0 {\displaystyle x^{3}-21x^{2}+35x-7=0} are tan 2 A , tan 2 B , tan 2 C . {\displaystyle \tan ^{2}\!A,\ \tan ^{2}\!B,\ \tan ^{2}\!C.}
For an integer n, let S ( n ) = ( − sin A ) n + sin n B + sin n C C ( n ) = ( − cos A ) n + cos n B + cos n C T ( n ) = tan n A + tan n B + tan n C {\displaystyle {\begin{aligned}S(n)&=(-\sin A)^{n}+\sin ^{n}\!B+\sin ^{n}\!C\\[4pt]C(n)&=(-\cos A)^{n}+\cos ^{n}\!B+\cos ^{n}\!C\\[4pt]T(n)&=\tan ^{n}\!A+\tan ^{n}\!B+\tan ^{n}\!C\end{aligned}}}
We also have Ramanujan type identities,4344
2 sin 2 A 3 + 2 sin 2 B 3 + 2 sin 2 C 3 = − 7 18 × − 7 3 + 6 + 3 ( 5 − 3 7 3 3 + 4 − 3 7 3 3 ) 3 2 sin 2 A 3 + 2 sin 2 B 3 + 2 sin 2 C 3 = − 7 18 × − 7 3 + 6 + 3 ( 5 − 3 7 3 3 + 4 − 3 7 3 3 ) 3 4 sin 2 2 A 3 + 4 sin 2 2 B 3 + 4 sin 2 2 C 3 = 49 18 × 49 3 + 6 + 3 ( 12 + 3 ( 49 3 + 2 7 3 ) 3 + 11 + 3 ( 49 3 + 2 7 3 ) 3 ) 3 2 cos 2 A 3 + 2 cos 2 B 3 + 2 cos 2 C 3 = 5 − 3 7 3 3 4 cos 2 2 A 3 + 4 cos 2 2 B 3 + 4 cos 2 2 C 3 = 11 + 3 ( 2 7 3 + 49 3 ) 3 tan 2 A 3 + tan 2 B 3 + tan 2 C 3 = − 7 18 × 7 3 + 6 + 3 ( 5 + 3 ( 7 3 − 49 3 ) 3 + − 3 + 3 ( 7 3 − 49 3 ) 3 ) 3 tan 2 2 A 3 + tan 2 2 B 3 + tan 2 2 C 3 = 49 18 × 3 49 3 + 6 + 3 ( 89 + 3 ( 3 49 3 + 5 7 3 ) 3 + 25 + 3 ( 3 49 3 + 5 7 3 ) 3 ) 3 {\displaystyle {\begin{array}{ccccccl}{\sqrt[{3}]{2\sin 2A}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2B}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2C}}\!&\!=\!&\!-{\sqrt[{18}]{7}}\times {\sqrt[{3}]{-{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}+{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\right)}}\\[2pt]{\sqrt[{3}]{2\sin 2A}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2B}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2C}}\!&\!=\!&\!-{\sqrt[{18}]{7}}\times {\sqrt[{3}]{-{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}+{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\right)}}\\[2pt]{\sqrt[{3}]{4\sin ^{2}2A}}\!&\!+\!&\!{\sqrt[{3}]{4\sin ^{2}2B}}\!&\!+\!&\!{\sqrt[{3}]{4\sin ^{2}2C}}\!&\!=\!&\!{\sqrt[{18}]{49}}\times {\sqrt[{3}]{{\sqrt[{3}]{49}}+6+3\left({\sqrt[{3}]{12+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{11+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}\right)}}\\[6pt]{\sqrt[{3}]{2\cos 2A}}\!&\!+\!&\!{\sqrt[{3}]{2\cos 2B}}\!&\!+\!&\!{\sqrt[{3}]{2\cos 2C}}\!&\!=\!&\!{\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}\\[8pt]{\sqrt[{3}]{4\cos ^{2}2A}}\!&\!+\!&\!{\sqrt[{3}]{4\cos ^{2}2B}}\!&\!+\!&\!{\sqrt[{3}]{4\cos ^{2}2C}}\!&\!=\!&\!{\sqrt[{3}]{11+3(2{\sqrt[{3}]{7}}+{\sqrt[{3}]{49}})}}\\[6pt]{\sqrt[{3}]{\tan 2A}}\!&\!+\!&\!{\sqrt[{3}]{\tan 2B}}\!&\!+\!&\!{\sqrt[{3}]{\tan 2C}}\!&\!=\!&\!-{\sqrt[{18}]{7}}\times {\sqrt[{3}]{{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{5+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}+{\sqrt[{3}]{-3+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}\right)}}\\[2pt]{\sqrt[{3}]{\tan ^{2}2A}}\!&\!+\!&\!{\sqrt[{3}]{\tan ^{2}2B}}\!&\!+\!&\!{\sqrt[{3}]{\tan ^{2}2C}}\!&\!=\!&\!{\sqrt[{18}]{49}}\times {\sqrt[{3}]{3{\sqrt[{3}]{49}}+6+3\left({\sqrt[{3}]{89+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{25+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}\right)}}\end{array}}}
1 2 sin 2 A 3 + 1 2 sin 2 B 3 + 1 2 sin 2 C 3 = − 1 7 18 × 6 + 3 ( 5 − 3 7 3 3 + 4 − 3 7 3 3 ) 3 1 4 sin 2 2 A 3 + 1 4 sin 2 2 B 3 + 1 4 sin 2 2 C 3 = 1 49 18 × 2 7 3 + 6 + 3 ( 12 + 3 ( 49 3 + 2 7 3 ) 3 + 11 + 3 ( 49 3 + 2 7 3 ) 3 ) 3 1 2 cos 2 A 3 + 1 2 cos 2 B 3 + 1 2 cos 2 C 3 = 4 − 3 7 3 3 1 4 cos 2 2 A 3 + 1 4 cos 2 2 B 3 + 1 4 cos 2 2 C 3 = 12 + 3 ( 2 7 3 + 49 3 ) 3 1 tan 2 A 3 + 1 tan 2 B 3 + 1 tan 2 C 3 = − 1 7 18 × − 49 3 + 6 + 3 ( 5 + 3 ( 7 3 − 49 3 ) 3 + − 3 + 3 ( 7 3 − 49 3 ) 3 ) 3 1 tan 2 2 A 3 + 1 tan 2 2 B 3 + 1 tan 2 2 C 3 = 1 49 18 × 5 7 3 + 6 + 3 ( 89 + 3 ( 3 49 3 + 5 7 3 ) 3 + 25 + 3 ( 3 49 3 + 5 7 3 ) 3 ) 3 {\displaystyle {\begin{array}{ccccccl}{\frac {1}{\sqrt[{3}]{2\sin 2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\sin 2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\sin 2C}}}\!&\!=\!&\!-{\frac {1}{\sqrt[{18}]{7}}}\times {\sqrt[{3}]{6+3\left({\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}+{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\right)}}\\[2pt]{\frac {1}{\sqrt[{3}]{4\sin ^{2}2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\sin ^{2}2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\sin ^{2}2C}}}\!&\!=\!&\!{\frac {1}{\sqrt[{18}]{49}}}\times {\sqrt[{3}]{2{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{12+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{11+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}\right)}}\\[2pt]{\frac {1}{\sqrt[{3}]{2\cos 2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\cos 2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\cos 2C}}}\!&\!=\!&\!{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\\[6pt]{\frac {1}{\sqrt[{3}]{4\cos ^{2}2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\cos ^{2}2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\cos ^{2}2C}}}\!&\!=\!&\!{\sqrt[{3}]{12+3(2{\sqrt[{3}]{7}}+{\sqrt[{3}]{49}})}}\\[2pt]{\frac {1}{\sqrt[{3}]{\tan 2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan 2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan 2C}}}\!&\!=\!&\!-{\frac {1}{\sqrt[{18}]{7}}}\times {\sqrt[{3}]{-{\sqrt[{3}]{49}}+6+3\left({\sqrt[{3}]{5+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}+{\sqrt[{3}]{-3+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}\right)}}\\[2pt]{\frac {1}{\sqrt[{3}]{\tan ^{2}2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan ^{2}2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan ^{2}2C}}}\!&\!=\!&\!{\frac {1}{\sqrt[{18}]{49}}}\times {\sqrt[{3}]{5{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{89+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{25+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}\right)}}\end{array}}}
cos 2 A cos 2 B 3 + cos 2 B cos 2 C 3 + cos 2 C cos 2 A 3 = − 7 3 cos 2 B cos 2 A 3 + cos 2 C cos 2 B 3 + cos 2 A cos 2 C 3 = 0 cos 4 2 B cos 2 A 3 + cos 4 2 C cos 2 B 3 + cos 4 2 A cos 2 C 3 = − 49 3 2 cos 5 2 A cos 2 2 B 3 + cos 5 2 B cos 2 2 C 3 + cos 5 2 C cos 2 2 A 3 = 0 cos 5 2 B cos 2 2 A 3 + cos 5 2 C cos 2 2 B 3 + cos 5 2 A cos 2 2 C 3 = − 3 × 7 3 2 cos 14 2 A cos 5 2 B 3 + cos 14 2 B cos 5 2 C 3 + cos 14 2 C cos 5 2 A 3 = 0 cos 14 2 B cos 5 2 A 3 + cos 14 2 C cos 5 2 B 3 + cos 14 2 A cos 5 2 C 3 = − 61 × 7 3 8 . {\displaystyle {\begin{array}{ccccccl}{\sqrt[{3}]{\frac {\cos 2A}{\cos 2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2B}{\cos 2C}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2C}{\cos 2A}}}\!&\!=\!&\!-{\sqrt[{3}]{7}}\\[2pt]{\sqrt[{3}]{\frac {\cos 2B}{\cos 2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2C}{\cos 2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2A}{\cos 2C}}}\!&\!=\!&\!0\\[2pt]{\sqrt[{3}]{\frac {\cos ^{4}2B}{\cos 2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{4}2C}{\cos 2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{4}2A}{\cos 2C}}}\!&\!=\!&\!-{\frac {\sqrt[{3}]{49}}{2}}\\[2pt]{\sqrt[{3}]{\frac {\cos ^{5}2A}{\cos ^{2}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2B}{\cos ^{2}2C}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2C}{\cos ^{2}2A}}}\!&\!=\!&\!0\\[2pt]{\sqrt[{3}]{\frac {\cos ^{5}2B}{\cos ^{2}2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2C}{\cos ^{2}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2A}{\cos ^{2}2C}}}\!&\!=\!&\!-3\times {\frac {\sqrt[{3}]{7}}{2}}\\[2pt]{\sqrt[{3}]{\frac {\cos ^{14}2A}{\cos ^{5}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2B}{\cos ^{5}2C}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2C}{\cos ^{5}2A}}}\!&\!=\!&\!0\\[2pt]{\sqrt[{3}]{\frac {\cos ^{14}2B}{\cos ^{5}2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2C}{\cos ^{5}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2A}{\cos ^{5}2C}}}\!&\!=\!&\!-61\times {\frac {\sqrt[{3}]{7}}{8}}.\end{array}}} 45
{\displaystyle }
Yiu, Paul (2009). "Heptagonal Triangles and Their Companions" (PDF). Forum Geometricorum. 9: 125–148. http://forumgeom.fau.edu/FG2009volume9/FG200912.pdf ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Altintas, Abdilkadir (2016). "Some Collinearities in the Heptagonal Triangle" (PDF). Forum Geometricorum. 16: 249–256. http://forumgeom.fau.edu/FG2016volume16/FG201630.pdf ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Wang, Kai (August 2019). "On cubic equations with zero sums of cubic roots of roots" – via ResearchGate. https://www.researchgate.net/publication/335392159 ↩
Weisstein, Eric W. "Heptagonal Triangle". mathworld.wolfram.com. Retrieved 2024-08-02. https://mathworld.wolfram.com/ ↩
Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153 ↩
Moll, Victor H. (2007-09-24). "An elementary trigonometric equation". arXiv:0709.3755 [math.NT]. /wiki/ArXiv_(identifier) ↩
Wang, Kai (October 2019). "On Ramanujan Type Identities For PI/7" – via ResearchGate. https://www.researchgate.net/publication/336813631 ↩
Gleason, Andrew Mattei (March 1988). "Angle trisection, the heptagon, and the triskaidecagon" (PDF). The American Mathematical Monthly. 95 (3): 185–194. doi:10.2307/2323624. JSTOR 2323624. Archived from the original (PDF) on 2015-12-19. https://web.archive.org/web/20151219180208/http://apollonius.math.nthu.edu.tw/d1/ne01/jyt/linkjstor/regular/7.pdf#3 ↩
Witula, Roman; Slota, Damian (2007). "New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7" (PDF). Journal of Integer Sequences. 10 (5) 07.5.6. Bibcode:2007JIntS..10...56W. https://www.emis.de/journals/JIS/VOL10/Slota/witula13.pdf ↩