The tensor product is the category-theoretic product in the category of graphs and graph homomorphisms. That is, a homomorphism to G × H corresponds to a pair of homomorphisms to G and to H. In particular, a graph I admits a homomorphism into G × H if and only if it admits a homomorphism into G and into H.
To see that, in one direction, observe that a pair of homomorphisms fG : I → G and fH : I → H yields a homomorphism
In the other direction, a homomorphism f : I → G × H can be composed with the projections homomorphisms
to yield homomorphisms to G and to H.
The adjacency matrix of G × H is the Kronecker (tensor) product of the adjacency matrices of G and H.
If a graph can be represented as a tensor product, then there may be multiple different representations (tensor products do not satisfy unique factorization) but each representation has the same number of irreducible factors. Imrich (1998) gives a polynomial time algorithm for recognizing tensor product graphs and finding a factorization of any such graph.
If either G or H is bipartite, then so is their tensor product. G × H is connected if and only if both factors are connected and at least one factor is nonbipartite.3 In particular the bipartite double cover of G is connected if and only if G is connected and nonbipartite.
The Hedetniemi conjecture, which gave a formula for the chromatic number of a tensor product, was disproved by Yaroslav Shitov (2019).
The tensor product of graphs equips the category of graphs and graph homomorphisms with the structure of a symmetric closed monoidal category. Let G0 denote the underlying set of vertices of the graph G. The internal hom [G, H] has functions f : G0 → H0 as vertices and an edge from f : G0 → H0 to f' : G0 → H0 whenever an edge {x, y} in G implies {f (x), f ' (y)} in H.4
Weichsel 1962. - Weichsel, Paul M. (1962), "The Kronecker product of graphs", Proceedings of the American Mathematical Society, 13 (1): 47–52, doi:10.2307/2033769, JSTOR 2033769, MR 0133816 https://doi.org/10.2307%2F2033769 ↩
Hahn & Sabidussi 1997. - Hahn, Geňa; Sabidussi, Gert (1997), Graph symmetry: algebraic methods and applications, NATO Advanced Science Institutes Series, vol. 497, Springer, p. 116, ISBN 978-0-7923-4668-5 https://books.google.com/books?id=-tIaXdII8egC&pg=PA116 ↩
Imrich & Klavžar 2000, Theorem 5.29 - Imrich, Wilfried; Klavžar, Sandi (2000), Product Graphs: Structure and Recognition, Wiley, ISBN 0-471-37039-8 ↩
Brown et al. 2008; see also this proof - Brown, R.; Morris, I.; Shrimpton, J.; Wensley, C. D. (2008), "Graphs of Morphisms of Graphs", The Electronic Journal of Combinatorics, 15: A1 ↩