Let ( S , S ) {\displaystyle (S,{\mathcal {S}})} , ( T , T ) {\displaystyle (T,{\mathcal {T}})} be two measurable spaces. A function
is called a (transition) kernel from S {\displaystyle S} to T {\displaystyle T} if the following two conditions hold:1
Transition kernels are usually classified by the measures they define. Those measures are defined as
with
for all B ∈ T {\displaystyle B\in {\mathcal {T}}} and all s ∈ S {\displaystyle s\in S} . With this notation, the kernel κ {\displaystyle \kappa } is called23
In this section, let ( S , S ) {\displaystyle (S,{\mathcal {S}})} , ( T , T ) {\displaystyle (T,{\mathcal {T}})} and ( U , U ) {\displaystyle (U,{\mathcal {U}})} be measurable spaces and denote the product σ-algebra of S {\displaystyle {\mathcal {S}}} and T {\displaystyle {\mathcal {T}}} with S ⊗ T {\displaystyle {\mathcal {S}}\otimes {\mathcal {T}}}
Let κ 1 {\displaystyle \kappa ^{1}} be a s-finite kernel from S {\displaystyle S} to T {\displaystyle T} and κ 2 {\displaystyle \kappa ^{2}} be a s-finite kernel from S × T {\displaystyle S\times T} to U {\displaystyle U} . Then the product κ 1 ⊗ κ 2 {\displaystyle \kappa ^{1}\otimes \kappa ^{2}} of the two kernels is defined as45
for all A ∈ T ⊗ U {\displaystyle A\in {\mathcal {T}}\otimes {\mathcal {U}}} .
The product of two kernels is a kernel from S {\displaystyle S} to T × U {\displaystyle T\times U} . It is again a s-finite kernel and is a σ {\displaystyle \sigma } -finite kernel if κ 1 {\displaystyle \kappa ^{1}} and κ 2 {\displaystyle \kappa ^{2}} are σ {\displaystyle \sigma } -finite kernels. The product of kernels is also associative, meaning it satisfies
for any three suitable s-finite kernels κ 1 , κ 2 , κ 3 {\displaystyle \kappa ^{1},\kappa ^{2},\kappa ^{3}} .
The product is also well-defined if κ 2 {\displaystyle \kappa ^{2}} is a kernel from T {\displaystyle T} to U {\displaystyle U} . In this case, it is treated like a kernel from S × T {\displaystyle S\times T} to U {\displaystyle U} that is independent of S {\displaystyle S} . This is equivalent to setting
for all A ∈ U {\displaystyle A\in {\mathcal {U}}} and all s ∈ S {\displaystyle s\in S} .67
Let κ 1 {\displaystyle \kappa ^{1}} be a s-finite kernel from S {\displaystyle S} to T {\displaystyle T} and κ 2 {\displaystyle \kappa ^{2}} a s-finite kernel from S × T {\displaystyle S\times T} to U {\displaystyle U} . Then the composition κ 1 ⋅ κ 2 {\displaystyle \kappa ^{1}\cdot \kappa ^{2}} of the two kernels is defined as89
for all s ∈ S {\displaystyle s\in S} and all B ∈ U {\displaystyle B\in {\mathcal {U}}} .
The composition is a kernel from S {\displaystyle S} to U {\displaystyle U} that is again s-finite. The composition of kernels is associative, meaning it satisfies
for any three suitable s-finite kernels κ 1 , κ 2 , κ 3 {\displaystyle \kappa ^{1},\kappa ^{2},\kappa ^{3}} . Just like the product of kernels, the composition is also well-defined if κ 2 {\displaystyle \kappa ^{2}} is a kernel from T {\displaystyle T} to U {\displaystyle U} .
An alternative notation is for the composition is κ 1 κ 2 {\displaystyle \kappa ^{1}\kappa ^{2}} 10
Let T + , S + {\displaystyle {\mathcal {T}}^{+},{\mathcal {S}}^{+}} be the set of positive measurable functions on ( S , S ) , ( T , T ) {\displaystyle (S,{\mathcal {S}}),(T,{\mathcal {T}})} .
Every kernel κ {\displaystyle \kappa } from S {\displaystyle S} to T {\displaystyle T} can be associated with a linear operator
given by11
The composition of these operators is compatible with the composition of kernels, meaning12
Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 180. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6. 978-1-84800-047-6 ↩
Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. p. 30. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3. 978-3-319-41596-3 ↩
Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. p. 33. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3. 978-3-319-41596-3 ↩
Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 279. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6. 978-1-84800-047-6 ↩
Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 281. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6. 978-1-84800-047-6 ↩
Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. pp. 29–30. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3. 978-3-319-41596-3 ↩