Suppose that (q1, ..., qn, p1, ..., pn) is a system of canonical coordinates on a phase space. If each of them is expressed as a function of two variables, u and v, then the Lagrange bracket of u and v is defined by the formula
Main article: Canonical transformation
The concept of Lagrange brackets can be expanded to that of matrices by defining the Lagrange matrix.
Consider the following canonical transformation: η = [ q 1 ⋮ q N p 1 ⋮ p N ] → ε = [ Q 1 ⋮ Q N P 1 ⋮ P N ] {\displaystyle \eta ={\begin{bmatrix}q_{1}\\\vdots \\q_{N}\\p_{1}\\\vdots \\p_{N}\\\end{bmatrix}}\quad \rightarrow \quad \varepsilon ={\begin{bmatrix}Q_{1}\\\vdots \\Q_{N}\\P_{1}\\\vdots \\P_{N}\\\end{bmatrix}}}
Defining M := ∂ ( Q , P ) ∂ ( q , p ) {\textstyle M:={\frac {\partial (\mathbf {Q} ,\mathbf {P} )}{\partial (\mathbf {q} ,\mathbf {p} )}}} , the Lagrange matrix is defined as L ( η ) = M T J M {\textstyle {\mathcal {L}}(\eta )=M^{T}JM} , where J {\displaystyle J} is the symplectic matrix under the same conventions used to order the set of coordinates. It follows from the definition that:
L i j ( η ) = [ M T J M ] i j = ∑ k = 1 N ( ∂ ε k ∂ η i ∂ ε N + k ∂ η j − ∂ ε N + k ∂ η i ∂ ε k ∂ η j ) = ∑ k = 1 N ( ∂ Q k ∂ η i ∂ P k ∂ η j − ∂ P k ∂ η i ∂ Q k ∂ η j ) = [ η i , η j ] ε {\displaystyle {\mathcal {L}}_{ij}(\eta )=[M^{T}JM]_{ij}=\sum _{k=1}^{N}\left({\frac {\partial \varepsilon _{k}}{\partial \eta _{i}}}{\frac {\partial \varepsilon _{N+k}}{\partial \eta _{j}}}-{\frac {\partial \varepsilon _{N+k}}{\partial \eta _{i}}}{\frac {\partial \varepsilon _{k}}{\partial \eta _{j}}}\right)=\sum _{k=1}^{N}\left({\frac {\partial Q_{k}}{\partial \eta _{i}}}{\frac {\partial P_{k}}{\partial \eta _{j}}}-{\frac {\partial P_{k}}{\partial \eta _{i}}}{\frac {\partial Q_{k}}{\partial \eta _{j}}}\right)=[\eta _{i},\eta _{j}]_{\varepsilon }}
The Lagrange matrix satisfies the following known properties: L T = − L | L | = | M | 2 L − 1 ( η ) = − M − 1 J ( M − 1 ) T = − P ( η ) {\displaystyle {\begin{aligned}{\mathcal {L}}^{T}&=-{\mathcal {L}}\\|{\mathcal {L}}|&={|M|^{2}}\\{\mathcal {L}}^{-1}(\eta )&=-M^{-1}J(M^{-1})^{T}=-{\mathcal {P}}(\eta )\\\end{aligned}}} where the P ( η ) {\textstyle {\mathcal {P}}(\eta )} is known as a Poisson matrix and whose elements correspond to Poisson brackets. The last identity can also be stated as the following: ∑ k = 1 2 N { η i , η k } [ η k , η j ] = − δ i j {\displaystyle \sum _{k=1}^{2N}\{\eta _{i},\eta _{k}\}[\eta _{k},\eta _{j}]=-\delta _{ij}} Note that the summation here involves generalized coordinates as well as generalized momentum.
The invariance of Lagrange bracket can be expressed as: [ η i , η j ] ε = [ η i , η j ] η = J i j {\textstyle [\eta _{i},\eta _{j}]_{\varepsilon }=[\eta _{i},\eta _{j}]_{\eta }=J_{ij}} , which directly leads to the symplectic condition: M T J M = J {\textstyle M^{T}JM=J} .1
Giacaglia, Giorgio E. O. (1972). Perturbation methods in non-linear systems. Applied mathematical sciences. New York Heidelberg: Springer. pp. 8–9. ISBN 978-3-540-90054-2. 978-3-540-90054-2 ↩