TcO−4 is the starting material for most of the chemistry of technetium. Pertechnetate salts are usually colorless. TcO−4 is produced by oxidizing technetium with nitric acid or with hydrogen peroxide. The pertechnetate anion is similar to the permanganate anion but is a weaker oxidizing agent. It is tetrahedral and diamagnetic. The standard electrode potential for TcO−4/TcO2 is only +0.738 V in acidic solution, as compared to +1.695 V for MnO−4/MnO2. Because of its diminished oxidizing power, TcO−4 is stable in alkaline solution. TcO−4 is more similar to ReO−4. Depending on the reducing agent, TcO−4 can be converted to derivatives containing Tc(VI), Tc(V), and Tc(IV). In the absence of strong complexing ligands, TcO−4 is reduced to a +4 oxidation state via the formation of TcO2 hydrate.
Some metals like actinides, barium, scandium, yttrium or zirconium may form complex salts with pertechnetate thus strongly effecting its liquid-liquid extraction behavior.
As the 99Mo continuously decays to 99mTc, the 99mTc can be removed periodically (usually daily) by flushing a saline solution (0.15 M NaCl in water) through the alumina column: the more highly charged 99MoO2−4 is retained on the column, where it continues to undergo radioactive decay, while the medically useful radioisotope 99mTcO−4 is eluted in the saline. The eluate from the column must be sterile and pyrogen free, so that the Tc drug can be used directly, usually within 12 hours of elution. In a few cases, sublimation or solvent extraction may be used.
99mTc is used primarily in the study of the thyroid gland - its morphology, vascularity, and function. TcO−4 and iodide, due to their comparable charge/radius ratio, are similarly incorporated into the thyroid gland. The pertechnetate ion is not incorporated into the thyroglobulin. It is also used in the study of blood perfusion, regional accumulation, and cerebral lesions in the brain, as it accumulates primarily in the choroid plexus.
99mTcO−4 is advantageous for the synthesis of a variety of radiopharmaceuticals because Tc can adopt a number of oxidation states. The oxidation state and coligands dictate the specificity of the radiopharmaceutical. The starting material Na[99mTcO4], made available after elution from the generator column, as mentioned above, can be reduced in the presence of complexing ligands. Many different reducing agents can be used, but transition metal reductants are avoided because they compete with 99mTc for ligands. Oxalates, formates, hydroxylamine, and hydrazine are also avoided because they form complexes with the technetium. Electrochemical reduction is impractical.
Ideally, the synthesis of the desired radiopharmaceutical from 99mTcO−4, a reducing agent, and desired ligands should occur in one container after elution, and the reaction must be performed in a solvent that can be injected intravenously, such as a saline solution. Kits are available that contain the reducing agent, usually tin(II) and ligands. These kits are sterile, pyrogen-free, easily purchased, and can be stored for long periods of time. The reaction with 99mTcO−4 takes place directly after elution from the generator column and shortly before its intended use. A high organ specificity is important because the injected activity should accumulate in the organ under investigation, as there should be a high activity ratio of the target organ to nontarget organs. If there is a high activity in organs adjacent to the one under investigation, the image of the target organ can be obscured. Also, high organ specificity allows for the reduction of the injected activity, and thus the exposure to radiation, in the patient. The radiopharmaceutical must be kinetically inert, in that it must not change chemically in vivo en route to the target organ.
It is actively accumulated and secreted by the mucoid cells of the gastric mucosa, and therefore, technetate(VII) radiolabeled with technetium-99m is injected into the body when looking for ectopic gastric tissue as is found in a Meckel's diverticulum with Meckel's scans.
All technetium salts are mildly radioactive, but some of them have explored use of the element for its chemical properties. In these uses, its radioactivity is incidental, and generally the least radioactive (longest-lived) isotopes of Tc are used. In particular, 99Tc (half-life 211,000 years) is used in corrosion research, because it is the decay product of the easily obtained commercial 99mTc isotope. Solutions of technetate(VII) react with the surface of iron to form technetium dioxide, in this way it is able to act as an anodic corrosion inhibitor.
"pertechnetate". Merriam-Webster.com Dictionary. Merriam-Webster. https://www.merriam-webster.com/dictionary/pertechnetate
Ustynyuk, Yuri A.; Gloriozov, Igor P.; Zhokhova, Nelly I.; German, Konstantin E.; Kalmykov, Stepan N. (November 2021). "Hydration of the pertechnetate anion. DFT study". Journal of Molecular Liquids. 342: 117404. doi:10.1016/j.molliq.2021.117404. ISSN 0167-7322. https://doi.org/10.1016/j.molliq.2021.117404
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Wells, A. F.; Structural Inorganic Chemistry; Clarendon Press: Oxford, Great Britain; 1984; p. 1050.
Schwochau, K. (1994). "Technetium Radiopharmaceuticals-Fundamentals, Synthesis, Structure, and Development". Angew. Chem. Int. Ed. Engl. 33 (22): 2258–2267. doi:10.1002/anie.199422581. /wiki/Angew._Chem._Int._Ed._Engl.
Encyclopædia Britannica: Technetium
Schwochau, K. (1994). "Technetium Radiopharmaceuticals-Fundamentals, Synthesis, Structure, and Development". Angew. Chem. Int. Ed. Engl. 33 (22): 2258–2267. doi:10.1002/anie.199422581. /wiki/Angew._Chem._Int._Ed._Engl.
Fedosseev, A. M.; Budantseva, N. A.; Grigoriev, M. S.; Guerman, K. E.; Krupa, J.-C. (2003-03-01). "Synthesis and properties of neptunium(VI,V) and plutonium(VI) pertechnetates". Radiochimica Acta. 91 (3): 147–152. doi:10.1524/ract.91.3.147.19976. ISSN 2193-3405. https://www.degruyter.com/document/doi/10.1524/ract.91.3.147.19976/html
Strub, Erik; Grödler, Dennis; Zaratti, Daniele; Yong, Clarence; Dünnebier, Lisa; Bazhenova, Sonja; Roca Jungfer, Maximilian; Breugst, Martin; Zegke, Markus (2024-05-08). "Pertechnetates – A Structural Study Across the Periodic Table". Chemistry – A European Journal. 30 (26). doi:10.1002/chem.202400131. ISSN 0947-6539. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202400131
Shohel, Mohammad; Bustos, Jenna; Roseborough, Alexander; Nyman, May (2023-12-28). "Pertechnetate/perrhenate‐capped Zr/Hf‐Dihydroxide Dimers: Elucidating Zr−TcO 4 Co‐Mobility in the Nuclear Fuel Cycle". Chemistry – A European Journal. doi:10.1002/chem.202303218. ISSN 0947-6539. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202303218
Shohel, Mohammad; Bustos, Jenna; Roseborough, Alexander; Nyman, May (2024-02-16). "Pertechnetate/perrhenate‐capped Zr/Hf‐Dihydroxide Dimers: Elucidating Zr−TcO 4 Co‐Mobility in the Nuclear Fuel Cycle". Chemistry – A European Journal. 30 (10). doi:10.1002/chem.202303218. ISSN 0947-6539. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202303218
Beasley, T. M., Palmer, H. E., and Nelp, W. B. (1966). "Distribution and Excretion of Technetium in Humans". Health Physics. 12 (10): 1425–1435. doi:10.1097/00004032-196610000-00004. PMID 5972440.{{cite journal}}: CS1 maint: multiple names: authors list (link) http://www.health-physics.com/pt/re/healthphys/abstract.00004032-196610000-00004.htm
Schwochau, K. (1994). "Technetium Radiopharmaceuticals-Fundamentals, Synthesis, Structure, and Development". Angew. Chem. Int. Ed. Engl. 33 (22): 2258–2267. doi:10.1002/anie.199422581. /wiki/Angew._Chem._Int._Ed._Engl.
R. Alberto, R. Schibli, A. Egli, A. P. Schubiger, U. Abram and T. A. Kaden (1998). "A Novel Organometallic Aqua Complex of Technetium for the Labeling of Biomolecules: Synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]− in Aqueous Solution and Its Reaction with a Bifunctional Ligand". J. Am. Chem. Soc. 120 (31): 7987–7988. doi:10.1021/ja980745t.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/J._Am._Chem._Soc.
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Emeléus, H. J.; Sharpe, A. G. (1968). Advances in Inorganic Chemistry and Radiochemistry, Volume 11. Academic Press. p. 26. ISBN 978-0-08-057860-6. 978-0-08-057860-6
D. E. Berning, N. C. Schroeder and R. M. Chamberlin (2005). "The autoreduction of pertechnetate in aqueous, alkaline solutions". Journal of Radioanalytical and Nuclear Chemistry. 263 (3): 613–618. doi:10.1007/s10967-005-0632-x. S2CID 95071892. https://zenodo.org/record/1232814
Schwochau, K. (1994). "Technetium Radiopharmaceuticals-Fundamentals, Synthesis, Structure, and Development". Angew. Chem. Int. Ed. Engl. 33 (22): 2258–2267. doi:10.1002/anie.199422581. /wiki/Angew._Chem._Int._Ed._Engl.
Shukla, S. K., Manni, G. B., and Cipriani, C. (1977). "The Behaviour of the Pertechnetate Ion in Humans". Journal of Chromatography B. 143 (5): 522–526. doi:10.1016/S0378-4347(00)81799-5. PMID 893641.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Journal_of_Chromatography_B
Razzak, M. A.; Naguib, M.; El-Garhy, M. (1967). "Fate of Sodium Pertechnetate-Technetium-99m". Journal of Nuclear Medicine. 8 (1): 50–59. PMID 6019138. /wiki/PMID_(identifier)
Schwochau, K. (1994). "Technetium Radiopharmaceuticals-Fundamentals, Synthesis, Structure, and Development". Angew. Chem. Int. Ed. Engl. 33 (22): 2258–2267. doi:10.1002/anie.199422581. /wiki/Angew._Chem._Int._Ed._Engl.
Ryo, U.Y.; Vaidya, P.V.; Schneider, A.B.; Bekerman, C; Pinsky, S.M. (1983). "Thyroid imaging agents: a comparison of I-123 and Tc-99m pertechnetate". Radiology. 148 (3): 819–822. doi:10.1148/radiology.148.3.6308711. PMID 6308711. /wiki/Doi_(identifier)
Nuclear Imaging of Meckel's Diverticulum: A Pictorial Essay of Pitfalls Archived 2012-01-17 at the Wayback Machine S. Huynh, M.D., R. Amin, M.D., B. Barron, M.D., R. Dhekne, M.D., P. Nikolaidis, M.D., L. Lamki, M.D.. University of Texas Houston Medical School and Memorial Hermann - Texas Medical Center (TMC), St. Luke's Episcopal Hospital and Texas Children Hospital, Houston, Texas. Last Modified September 5, 2007 http://www.uth.tmc.edu/radiology/publish/meckel_diverticulum/index.html
Diamond, Robert; Rothstein, Robin; Alavi, Abass (1991). "The Role of Cimetidine-Enhanced Technetium 99m-Pertechnetate Imaging for Visualizing Meckel's Diverticulum" (PDF). The Journal of Nuclear Medicine. 32 (7): 1422–1424. PMID 1648609. http://jnm.snmjournals.org/cgi/reprint/32/7/1422.pdf
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; Lipton, Andrew S.; Gassman, Paul L.; Lukens, Wayne W.; Kruger, Albert A.; Wall, Nathalie A.; McCloy, John S. (21 February 2017). "Chemical Trends in Solid Alkali Pertechnetates". Inorganic Chemistry. 56 (5): 2533–2544. doi:10.1021/acs.inorgchem.6b02694. PMID 28221786. https://doi.org/10.1021%2Facs.inorgchem.6b02694
Cartledge, G. H. (1973). "Twenty-Year Inhibition of Corrosion by the Pertechnetate Ion". Corrosion. 29 (9): 361–362. doi:10.5006/0010-9312-29.9.361. /wiki/Doi_(identifier)