The following notation is used:
Assume that f {\displaystyle f} is measurable with respect to F {\displaystyle {\mathcal {F}}} , that is
Then the Choquet integral of f {\displaystyle f} with respect to ν {\displaystyle \nu } is defined by:
where the integrals on the right-hand side are the usual Riemann integral (the integrands are integrable because they are monotone in x {\displaystyle x} ).
In general the Choquet integral does not satisfy additivity. More specifically, if ν {\displaystyle \nu } is not a probability measure, it may hold that
for some functions f {\displaystyle f} and g {\displaystyle g} .
The Choquet integral does satisfy the following properties.
If f ≤ g {\displaystyle f\leq g} then
For all λ ≥ 0 {\displaystyle \lambda \geq 0} it holds that
If f , g : S → R {\displaystyle f,g:S\rightarrow \mathbb {R} } are comonotone functions, that is, if for all s , s ′ ∈ S {\displaystyle s,s'\in S} it holds that
then
If ν {\displaystyle \nu } is 2-alternating, then
If ν {\displaystyle \nu } is 2-monotone, then
Let G {\displaystyle G} denote a cumulative distribution function such that G − 1 {\displaystyle G^{-1}} is d H {\displaystyle dH} integrable. Then this following formula is often referred to as Choquet Integral:
where H ^ ( x ) = H ( 1 ) − H ( 1 − x ) {\displaystyle {\hat {H}}(x)=H(1)-H(1-x)} .
The Choquet integral was applied in image processing, video processing and computer vision. In behavioral decision theory, Amos Tversky and Daniel Kahneman use the Choquet integral and related methods in their formulation of cumulative prospect theory.7
Choquet, G. (1953). "Theory of capacities". Annales de l'Institut Fourier. 5: 131–295. doi:10.5802/aif.53. https://doi.org/10.5802%2Faif.53 ↩
Denneberg, D. (1994). Non-additive measure and Integral. Kluwer Academic. ISBN 0-7923-2840-X. 0-7923-2840-X ↩
Grabisch, M. (1996). "The application of fuzzy integrals in multicriteria decision making". European Journal of Operational Research. 89 (3): 445–456. doi:10.1016/0377-2217(95)00176-X. /wiki/European_Journal_of_Operational_Research ↩
Chateauneuf, A.; Cohen, M. D. (2010). "Cardinal Extensions of the EU Model Based on the Choquet Integral". In Bouyssou, Denis; Dubois, Didier; Pirlot, Marc; Prade, Henri (eds.). Decision-making Process: Concepts and Methods. pp. 401–433. doi:10.1002/9780470611876.ch10. ISBN 9780470611876. 9780470611876 ↩
Sriboonchita, S.; Wong, W. K.; Dhompongsa, S.; Nguyen, H. T. (2010). Stochastic dominance and applications to finance, risk and economics. CRC Press. ISBN 978-1-4200-8266-1. 978-1-4200-8266-1 ↩
Lust, Thibaut & Rolland, Antoine. (2014). 2-additive Choquet Optimal Solutions in Multiobjective Optimization Problems. Communications in Computer and Information Science. 442. 256-265. 10.1007/978-3-319-08795-5_27. ↩
Tversky, A.; Kahneman, D. (1992). "Advances in Prospect Theory: Cumulative Representation of Uncertainty". Journal of Risk and Uncertainty. 5 (4): 297–323. doi:10.1007/bf00122574. S2CID 8456150. /wiki/Doi_(identifier) ↩