The type of bonding can be explained in terms of orbital hybridisation. In ethylene each carbon atom has three sp2 orbitals and one p-orbital. The three sp2 orbitals lie in a plane with ~120° angles. The p-orbital is perpendicular to this plane. When the carbon atoms approach each other, two of the sp2 orbitals overlap to form a sigma bond. At the same time, the two p-orbitals approach (again in the same plane) and together they form a pi bond. For maximum overlap, the p-orbitals have to remain parallel, and, therefore, rotation around the central bond is not possible. This property gives rise to cis-trans isomerism. Double bonds are shorter than single bonds because p-orbital overlap is maximized.
With 133 pm, the ethylene C=C bond length is shorter than the C−C length in ethane with 154 pm. The double bond is also stronger, 636 kJ mol−1 versus 368 kJ mol−1 but not twice as much as the pi-bond is weaker than the sigma bond due to less effective pi-overlap.
In an alternative representation, the double bond results from two overlapping sp3 orbitals as in a bent bond.3
In molecules with alternating double bonds and single bonds, p-orbital overlap can exist over multiple atoms in a chain, giving rise to a conjugated system. Conjugation can be found in systems such as dienes and enones. In cyclic molecules, conjugation can lead to aromaticity. In cumulenes, two double bonds are adjacent and do not overlap with each other.
Double bonds are common for period 2 elements carbon, nitrogen, and oxygen, and less common with elements of higher periods, a distinction called the double bond rule. Metals, too, can engage in multiple bonding in a metal–ligand multiple bond.
Double bonded compounds, alkene homologs, R2E=ER2 are now known for all of the heavier group 14 elements. Unlike the alkenes these compounds are not planar but adopt twisted and/or trans bent structures. These effects become more pronounced for the heavier elements. The distannene (Me3Si)2CHSn=SnCH(SiMe3)2 has a tin-tin bond length just a little shorter than a single bond, a trans bent structure with pyramidal coordination at each tin atom, and readily dissociates in solution to form (Me3Si)2CHSn: (stannanediyl, a carbene analog). The bonding comprises two weak donor acceptor bonds, the lone pair on each tin atom overlapping with the empty p orbital on the other.45 In contrast, in disilenes each silicon atom has planar coordination but the substituents are twisted so that the molecule as a whole is not planar. In diplumbenes the Pb=Pb bond length can be longer than that of many corresponding single bonds6 Plumbenes and stannenes generally dissociate in solution into monomers with bond enthalpies that are just a fraction of the corresponding single bonds. Some double bonds plumbenes and stannenes are similar in strength to hydrogen bonds.7 The Carter–Goddard–Malrieu–Trinquier model can be used to predict the nature of the bonding.8
March, Jerry, 1929-1997. (1985). Advanced organic chemistry : reactions, mechanisms, and structure (3rd ed.). New York: Wiley. ISBN 0-471-88841-9. OCLC 10998226. Archived from the original on 2019-12-10. Retrieved 2020-12-12.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) 0-471-88841-9 ↩
McMurry, John. Organic chemistry (Ninth ed.). Boston, MA, USA. ISBN 978-1-305-08048-5. OCLC 907259297. Archived from the original on 2024-04-04. Retrieved 2020-12-12. 978-1-305-08048-5 ↩
Carey, Francis A., 1937- (2007). Advanced organic chemistry. Sundberg, Richard J., 1938- (5th ed.). New York: Springer. ISBN 978-0-387-44897-8. OCLC 154040953. Archived from the original on 2024-04-04. Retrieved 2020-12-12.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) 978-0-387-44897-8 ↩
Power, Philip P. (1999). "π-Bonding and the Lone Pair Effect in Multiple Bonds between Heavier Main Group Elements". Chemical Reviews. 99 (12): 3463–3504. doi:10.1021/cr9408989. PMID 11849028. /wiki/Doi_(identifier) ↩
Wang, Yuzhong; Robinson, Gregory H. (2009). "Unique homonuclear multiple bonding in main group compounds". Chemical Communications (35). Royal Society of Chemistry: 5201–5213. doi:10.1039/B908048A. PMID 19707626. /wiki/Royal_Society_of_Chemistry ↩