Majority of existing codes for calculation of electromagnetic scattering by a single sphere is based on Mie theory which is an analytical solution of Maxwell's equations in terms of infinite series. Other approximations to scattering by a single sphere include: Debye series, ray tracing (geometrical optics), ray tracing including the effects of interference between rays, Airy theory, Rayleigh scattering, diffraction approximation. There are many phenomena related to light scattering by spherical particles such as resonances, surface waves, plasmons, near-field scattering. Even though Mie theory offers convenient and fast way of solving light scattering problem by homogeneous spherical particles, there are other techniques, such as discrete dipole approximation, FDTD, T-matrix, which can also be used for such tasks.
The compilation contains information about the electromagnetic scattering by spherical particles, relevant links, and applications.
Bohren, Craig F. and Donald R. Huffman, Absorption and scattering of light by small particles, New York : Wiley, 1998, 530 p., ISBN 0-471-29340-7, ISBN 978-0-471-29340-8 (second edition) /wiki/ISBN_(identifier)
Wriedt, T. (2009). "Light scattering theories and computer codes". Journal of Quantitative Spectroscopy and Radiative Transfer. 110 (11): 833–843. Bibcode:2009JQSRT.110..833W. doi:10.1016/j.jqsrt.2009.02.023. S2CID 33734719. https://zenodo.org/record/896157
This code is maintained as part of scatterlib, and can be downloaded from http://scatterlib.wikidot.com/mie http://scatterlib.wikidot.com/mie
Bohren, Craig F. and Donald R. Huffman, Absorption and scattering of light by small particles, New York : Wiley, 1998, 530 p., ISBN 0-471-29340-7, ISBN 978-0-471-29340-8 (second edition) /wiki/ISBN_(identifier)
The MiePlot program can be downloaded from http://www.philiplaven.com/mieplot.htm http://www.philiplaven.com/mieplot.htm
Philip Laven, "Simulation of Rainbows, Coronas, and Glories by use of Mie Theory", Applied Optics Vol. 42, 3, 436-444 (January 2003) plus various other published papers (all available at http://www.philiplaven.com/Publications.html). http://www.philiplaven.com/Publications.html
Grainger, R.G.; Lucas, J.; Thomas, G.E.; Ewan, G. (2004). "The Calculation of Mie Derivatives". Appl. Opt. 43 (28): 5386–5393. Bibcode:2004ApOpt..43.5386G. doi:10.1364/AO.43.005386. PMID 15495430. /wiki/Bibcode_(identifier)
Mackowski, D.W.; Altenkirch, R. A.; Menguc, M. P. (1990). "Internal absorption cross sections in a stratified sphere". Applied Optics. 29 (10): 1551–1559. Bibcode:1990ApOpt..29.1551M. doi:10.1364/ao.29.001551. PMID 20563039. /wiki/Bibcode_(identifier)
Yang, W (2003). "Improved recursive algorithm for light scattering by a multilayered sphere". Applied Optics. 42 (9): 1710–1720. Bibcode:2003ApOpt..42.1710Y. doi:10.1364/ao.42.001710. PMID 12665102. /wiki/Bibcode_(identifier)
Toon, O. B.; Ackerman, T. P. (1981). "Algorithms for the calculation of scattering by stratified spheres". Applied Optics. 20 (20): 3657–3660. Bibcode:1981ApOpt..20.3657T. doi:10.1364/ao.20.003657. PMID 20372235. /wiki/Bibcode_(identifier)
Liu, L.; Wang, H.; Yu, B.; Xua, Y.; Shen, J. (2007). "Improved algorithm of light scattering by a coated sphere". China Particuology. 5 (3): 230–236. doi:10.1016/j.cpart.2007.03.003. /wiki/Doi_(identifier)
Toon, O. B.; Ackerman, T. P. (1981). "Algorithms for the calculation of scattering by stratified spheres". Applied Optics. 20 (20): 3657–3660. Bibcode:1981ApOpt..20.3657T. doi:10.1364/ao.20.003657. PMID 20372235. /wiki/Bibcode_(identifier)
Toon, Owen B.; Ackerman, T. P. (15 October 1981). "Algorithms for the calculation of scattering by stratified spheres". Applied Optics. 20 (20): 3657. Bibcode:1981ApOpt..20.3657T. doi:10.1364/AO.20.003657. https://atmos.uw.edu/~ackerman/Mie_code/rtpmie.ackerman.dmiess.f
Bohren, Craig F. and Donald R. Huffman, Absorption and scattering of light by small particles, New York : Wiley, 1998, 530 p., ISBN 0-471-29340-7, ISBN 978-0-471-29340-8 (second edition) /wiki/ISBN_(identifier)
Bohren, Craig F. and Donald R. Huffman, Absorption and scattering of light by small particles, New York : Wiley, 1998, 530 p., ISBN 0-471-29340-7, ISBN 978-0-471-29340-8 (second edition) /wiki/ISBN_(identifier)
/http://www.ugr.es/~aquiran/ciencia/codigos/bart.f http://www.ugr.es/~aquiran/ciencia/codigos/bart.f
A Quirantes and A V Delgado, The scattering of light by a suspension of coated spherical
particles: effects of polydispersity on cross sections, J. Phys. D: Appl. Phys. 30 (1997) 2123–2131.
"||". http://www.mjcopticaltech.com/Products/LscCoatSphHelp.htm
Liu, L.; Wang, H.; Yu, B.; Xu, Y.; Shen, J. (2007). "Improved algorithm of light scattering by a coated sphere". China Particuology. 5 (3): 230–236. doi:10.1016/j.cpart.2007.03.003. /wiki/Doi_(identifier)
O Pena and U Pal, Scattering of EM radiation by a multilayer sphere, Computer Physics Communications, 180, 2348-2354, 2009
W Yang, Improved recursive algorithm for light scattering by a multilayered sphere, Applied Optics, Vol. 42, No. 9, 2003
Yu-lin Xu, Bo A.S. Gustafson, A generalized multiparticle Mie-solution: further experimental verification, Journal of Quantitative Spectroscopy & Radiative Transfer 70 (2001) 395–419
"Scatcodes". http://www.eng.auburn.edu/users/dmckwski/scatcodes/
"A Generalized Multiparticle Mie code, especially suited for plasmonics: Gevero/py_gmm". GitHub. 2019-02-11. https://github.com/gevero/py_gmm
"CELES: CUDA-accelerated electromagnetic scattering by large ensembles of spheres: Disordered-photonics/celes". GitHub. 2019-02-14. https://github.com/disordered-photonics/celes
"QPMS: Electromagnetic multiple scattering library and toolkit". QPMS. 2022. https://qpms.necada.org
"SMUTHI: Scattering by multiple particles in thin-film systems". 2022-01-21. https://smuthi.readthedocs.io/en/latest/_source/01%20about/about_smuthi.html
Amos Egel, Krzysztof M. Czajkowski, Dominik Theobald, Konstantin Ladutenko, Alexey S. Kuznetsov, Lorenzo Pattelli, SMUTHI: A python package for the simulation of light scattering by multiple particles near or between planar interfaces, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 273, p. 107846 (2021) DOI https://doi.org/10.1016/j.jqsrt.2021.107846