Choose some integer A greater than 2 which characterizes the Lucas sequence:
where all operations are performed modulo N.
Then any odd prime p divides gcd ( N , V M − 2 ) {\displaystyle \gcd(N,V_{M}-2)} whenever M is a multiple of p − ( D / p ) {\displaystyle p-(D/p)} , where D = A 2 − 4 {\displaystyle D=A^{2}-4} and ( D / p ) {\displaystyle (D/p)} is the Jacobi symbol.
We require that ( D / p ) = − 1 {\displaystyle (D/p)=-1} , that is, D should be a quadratic non-residue modulo p. But as we don't know p beforehand, more than one value of A may be required before finding a solution. If ( D / p ) = + 1 {\displaystyle (D/p)=+1} , this algorithm degenerates into a slow version of Pollard's p − 1 algorithm.
So, for different values of M we calculate gcd ( N , V M − 2 ) {\displaystyle \gcd(N,V_{M}-2)} , and when the result is not equal to 1 or to N, we have found a non-trivial factor of N.
The values of M used are successive factorials, and V M {\displaystyle V_{M}} is the M-th value of the sequence characterized by V M − 1 {\displaystyle V_{M-1}} .
To find the M-th element V of the sequence characterized by B, we proceed in a manner similar to left-to-right exponentiation:
With N=112729 and A=5, successive values of V M {\displaystyle V_{M}} are:
At this point, gcd(110229-2,112729) = 139, so 139 is a non-trivial factor of 112729. Notice that p+1 = 140 = 22 × 5 × 7. The number 7! is the lowest factorial which is multiple of 140, so the proper factor 139 is found in this step.
Using another initial value, say A = 9, we get:
At this point gcd(91645-2,112729) = 811, so 811 is a non-trivial factor of 112729. Notice that p−1 = 810 = 2 × 5 × 34. The number 9! is the lowest factorial which is multiple of 810, so the proper factor 811 is found in this step. The factor 139 is not found this time because p−1 = 138 = 2 × 3 × 23 which is not a divisor of 9!
As can be seen in these examples we do not know in advance whether the prime that will be found has a smooth p+1 or p−1.
Based on Pollard's p − 1 and Williams's p+1 factoring algorithms, Eric Bach and Jeffrey Shallit developed techniques to factor n efficiently provided that it has a prime factor p such that any kth cyclotomic polynomial Φk(p) is smooth.1 The first few cyclotomic polynomials are given by the sequence Φ1(p) = p−1, Φ2(p) = p+1, Φ3(p) = p2+p+1, and Φ4(p) = p2+1.
Bach, Eric; Shallit, Jeffrey (1989). "Factoring with Cyclotomic Polynomials" (PDF). Mathematics of Computation. 52 (185). American Mathematical Society: 201–219. doi:10.1090/S0025-5718-1989-0947467-1. JSTOR 2008664. http://www.ams.org/journals/mcom/1989-52-185/S0025-5718-1989-0947467-1/S0025-5718-1989-0947467-1.pdf ↩