Selectable markers allow scientists to separate non-recombinant organisms (those which do not contain the selectable marker) from recombinant organisms (those which do); that is, a recombinant DNA molecule such as a plasmid expression vector is introduced into bacterial cells, and some bacteria are successfully transformed while some remain non-transformed. Antibiotics such as ampicillin, at sufficient concentrations, are toxic to most bacteria, which ordinarily lack resistance to them; when cultured on a nutrient medium containing ampicillin, bacteria lacking ampicillin resistance fail to divide and eventually die. The position is later noted on nitrocellulose paper and separated out to move them to a nutrient medium for mass production of the required product. An alternative to a selectable marker is a screenable marker, another type of reporter gene which allows the researcher to distinguish between wanted and unwanted cells or colonies, such as between blue and white colonies in blue–white screening. These wanted or unwanted cells are simply non-transformed cells that were unable to take up the screenable gene during the experiment.
For molecular biology research, different types of markers may be used based on the selection sought. These include:
Examples of selectable markers include:
In the future, alternative marker technologies will need to be used more often to, at the least, assuage concerns about their persistence into the final product. It is also possible that markers will be replaced entirely by future techniques which use removable markers, and others which do not use markers at all, instead relying on co-transformation, homologous recombination, and recombinase-mediated excision.6
"positive selection". Scitable. Nature. Retrieved 29 September 2011. http://www.nature.com/scitable/definition/positive-selection-94 ↩
"negative selection". Scitable. Nature. Retrieved 29 September 2011. http://www.nature.com/scitable/definition/negative-selection-97 ↩
Callmigration.org: Gene targeting http://www.cellmigration.org/resource/komouse/images/mousefig2.png ↩
Jang, Chuan-Wei; Magnuson, Terry (20 February 2013). "A Novel Selection Marker for Efficient DNA Cloning and Recombineering in E. coli". PLOS ONE. 8 (2): e57075. Bibcode:2013PLoSO...857075J. doi:10.1371/journal.pone.0057075. PMC 3577784. PMID 23437314. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577784 ↩
Boeke JD; LaCroute F; Fink GR (1984). "A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance". Mol. Gen. Genet. 197 (2): 345–6. doi:10.1007/bf00330984. PMID 6394957. S2CID 28881589. /wiki/Doi_(identifier) ↩
Goldstein, Daniel A.; Tinland, Bruno; Gilbertson, Lawrence A.; Staub, J.M.; Bannon, G.A.; Goodman, R.E.; McCoy, R.L.; Silvanovich, A. (2005). "Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies". Journal of Applied Microbiology. 99 (1). Society for Applied Microbiology (Wiley): 7–23. doi:10.1111/j.1365-2672.2005.02595.x. ISSN 1364-5072. PMID 15960661. S2CID 40454719. /wiki/Journal_of_Applied_Microbiology ↩