The Chebyshev PS method is frequently confused with other Chebyshev methods. Prior to the advent of PS methods, many authors7 proposed using Chebyshev polynomials to solve optimal control problems; however, none of these methods belong to the class of pseudospectral methods.
Ross, I. M.; Karpenko, M. (2012). "A Review of Pseudospectral Optimal Control: From Theory to Flight". Annual Reviews in Control. 36 (2): 182–197. doi:10.1016/j.arcontrol.2012.09.002. /wiki/Doi_(identifier) ↩
Elnagar, G.; Kazemi, M. A. (1998). "Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems". Computational Optimization and Applications. 11 (2): 195–217. doi:10.1023/A:1018694111831. S2CID 30241469. /wiki/Doi_(identifier) ↩
Fahroo, F.; Ross, I. M. (2002). "Direct trajectory optimization by a Chebyshev pseudospectral method". Journal of Guidance, Control, and Dynamics. 25 (1): 160–166. Bibcode:2002JGCD...25..160F. doi:10.2514/2.4862. https://zenodo.org/record/1235943 ↩
Trefethen, Lloyd N. (2008). "Is Gauss quadrature better than Clenshaw–Curtis?". SIAM Review. 50 (1): 67–87. Bibcode:2008SIAMR..50...67T. CiteSeerX 10.1.1.468.1193. doi:10.1137/060659831. /wiki/Lloyd_N._Trefethen ↩
Gong, Q.; Ross, I. M.; Fahroo, F. (2010). "Costate Computation by a Chebyshev Pseudospectral Method". Journal of Guidance, Control, and Dynamics. 33 (2): 623–628. Bibcode:2010JGCD...33..623G. doi:10.2514/1.45154. hdl:10945/48187. S2CID 55780038. /wiki/Bibcode_(identifier) ↩
Q. Gong, I. M. Ross and F. Fahroo, A Chebyshev Pseudospectral Method for Nonlinear Constrained Optimal Control Problems, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai, P.R. China, December 16–18, 2009 ↩
Vlassenbroeck, J.; Dooren, R. V. (1988). "A Chebyshev technique for solving nonlinear optimal control problems". IEEE Transactions on Automatic Control. 33 (4): 333–340. doi:10.1109/9.192187. /wiki/Doi_(identifier) ↩