Definition 1. Let G ⊆ Cn be a complex domain and f : G → R be a C2 (twice continuously differentiable) function. The function f is called pluriharmonic if, for every complex line
formed by using every couple of complex tuples a, b ∈ Cn, the function
is a harmonic function on the set
Definition 2. Let M be a complex manifold and f : M → R be a C2 function. The function f is called pluriharmonic if
Every pluriharmonic function is a harmonic function, but not the other way around. Further, it can be shown that for holomorphic functions of several complex variables the real (and the imaginary) parts are locally pluriharmonic functions. However a function being harmonic in each variable separately does not imply that it is pluriharmonic.
This article incorporates material from pluriharmonic function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
See for example (Severi 1958, p. 196) and (Rizza 1955, p. 202). Poincaré (1899, pp. 111–112) calls such functions "fonctions biharmoniques", irrespective of the dimension n ≥ 2 : his paper is perhaps[citation needed] the older one in which the pluriharmonic operator is expressed using the first order partial differential operators now called Wirtinger derivatives. - Severi, Francesco (1958), Lezioni sulle funzioni analitiche di più variabili complesse – Tenute nel 1956–57 all'Istituto Nazionale di Alta Matematica in Roma (in Italian), Padova: CEDAM – Casa Editrice Dott. Antonio Milani, pp. XIV+255, Zbl 0094.28002 https://zbmath.org/?format=complete&q=an:0094.28002 ↩
See for example the popular textbook by Krantz (1992, p. 92) and the advanced (even if a little outdated) monograph by Gunning & Rossi (1965, p. 271). - Krantz, Steven G. (1992), Function Theory of Several Complex Variables, Wadsworth & Brooks/Cole Mathematics Series (Second ed.), Pacific Grove, California: Wadsworth & Brooks/Cole, pp. xvi+557, ISBN 0-534-17088-9, MR 1162310, Zbl 0776.32001 https://mathscinet.ams.org/mathscinet-getitem?mr=1162310 ↩