Amorphous clays are young, and commonly found in recent volcanic ash deposits such as tephra. They are mixtures of alumina and silica which have not formed the ordered crystal shape of alumino-silica clays which time would provide. The majority of their negative charges originates from hydroxyl ions, which can gain or lose a hydrogen ion (H+) in response to soil pH, in such way as to buffer the soil pH. They may have either a negative charge provided by the attached hydroxyl ion (OH−), which can attract a cation, or lose the hydrogen of the hydroxyl to solution and display a positive charge which can attract anions. As a result, they may display either high CEC in an acid soil solution, or high anion exchange capacity in a basic soil solution.
In the extreme environment of high temperatures and the leaching caused by the heavy rain of tropical rain forests, the clay and organic colloids are largely destroyed. The heavy rains wash the alumino-silicate clays from the soil leaving only sesquioxide clays of low CEC. The high temperatures and humidity allow bacteria and fungi to virtually decay any organic matter on the rain-forest floor overnight and much of the nutrients are volatilized or leached from the soil and lost, leaving only a thin root mat lying directly on the mineral soil. However, carbon in the form of finely divided charcoal, also known as black carbon, is far more stable than soil colloids and is capable of performing many of the functions of the soil colloids of sub-tropical soils. Soil containing substantial quantities of charcoal, of an anthropogenic origin, is called terra preta. In Amazonia it testifies for the agronomic knowledge of past Amerindian civilizations. The pantropical peregrine earthworm Pontoscolex corethrurus has been suspected to contribute to the fine division of charcoal and its mixing to the mineral soil in the frame of present-day slash-and-burn or shifting cultivation still practiced by Amerindian tribes. Research into terra preta is still young but is promising. Fallow periods "on the Amazonian Dark Earths can be as short as 6 months, whereas fallow periods on oxisols are usually 8 to 10 years long" The incorporation of charcoal to agricultural soil for improving water and nutrient retention has been called biochar, being extended to other charred or carbon-rich by-products, and is now increasingly used in sustainable tropical agriculture. Biochar also allows the irreversible sorption of pesticides and other pollutants, a mechanism by which their mobility, and thus their environmental risk, decreases. It has also been argued as a mean of sequestering more carbon in the soil, thereby mitigating the so-called greenhouse effect. However, the use of biochar is limited by the availability of wood or other products of pyrolysis and by risks caused by concomitent deforestation.
Saxton, Keith E.; Rawls, Walter J. (2006). "Soil water characteristic estimates by texture and organic matter for hydrologic solutions" (PDF). Soil Science Society of America Journal. 70 (5): 1569–78. Bibcode:2006SSASJ..70.1569S. doi:10.2136/sssaj2005.0117. Archived (PDF) from the original on 2 September 2018. Retrieved 27 November 2022. https://hrsl.ba.ars.usda.gov/SPAW/Soil%20Water%20Characteristics-Paper.pdf
College of Tropical Agriculture and Human Resources. "Soil Mineralogy". University of Hawaiʻi at Mānoa. Retrieved 27 November 2022. https://www.ctahr.hawaii.edu/mauisoil/a_factor_mineralogy.aspx
Russell, E. Walter (1973). Soil conditions and plant growth (10th ed.). London, United Kingdom: Longman. pp. 67–70. ISBN 978-0-582-44048-7. Retrieved 27 November 2022. 978-0-582-44048-7
Mercader, Julio; Bennett, Tim; Esselmont, Chris; Simpson, Steven; Walde, Dale (2011). "Soil phytoliths from miombo woodlands in Mozambique". Quaternary Research. 75 (1): 138–50. Bibcode:2011QuRes..75..138M. doi:10.1016/j.yqres.2010.09.008. S2CID 140546854. Retrieved 27 November 2022. https://www.academia.edu/3269735
Sleep, Norman H.; Hessler, Angela M. (2006). "Weathering of quartz as an Archean climatic indicator" (PDF). Earth and Planetary Science Letters. 241 (3–4): 594–602. Bibcode:2006E&PSL.241..594S. doi:10.1016/j.epsl.2005.11.020. Retrieved 27 November 2022. https://geosci.uchicago.edu/~archer/deep_earth_readings/sleep.2006.archean_weat.pdf
Russell, E. Walter (1973). Soil conditions and plant growth (10th ed.). London, United Kingdom: Longman. pp. 67–70. ISBN 978-0-582-44048-7. Retrieved 27 November 2022. 978-0-582-44048-7
Banfield, Jillian F.; Barker, William W.; Welch, Susan A.; Taunton, Anne (1999). "Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere". Proceedings of the National Academy of Sciences of the United States of America. 96 (7): 3404–11. Bibcode:1999PNAS...96.3404B. doi:10.1073/pnas.96.7.3404. PMC 34281. PMID 10097050. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34281
Santamarina, J. Carlos; Klein, Katherine A.; Wang, Yu-Hsing; Prencke, E. (2002). "Specific surface: determination and relevance" (PDF). Canadian Geotechnical Journal. 39 (1): 233–41. doi:10.1139/t01-077. Archived (PDF) from the original on 30 September 2018. Retrieved 27 November 2022. https://egel.kaust.edu.sa/docs/default-source/publications-files/santamarina_2002aaa.pdf
Tombácz, Etelka; Szekeres, Márta (2006). "Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite". Applied Clay Science. 34 (1–4): 105–24. Bibcode:2006ApCS...34..105T. doi:10.1016/j.clay.2006.05.009. Retrieved 27 November 2022. https://www.academia.edu/11482380
Brown, George (1984). "Crystal structures of clay minerals and related phyllosilicates". Philosophical Transactions of the Royal Society of London, Series A. 311 (1517): 221–40. Bibcode:1984RSPTA.311..221B. doi:10.1098/rsta.1984.0025. S2CID 124741431. Retrieved 27 November 2022. https://www.researchgate.net/publication/243687416
Hillier, Stephen (1978). "Clay mineralogy". In Middleton, Gerard V.; Church, Michael J.; Coniglio, Mario; Hardie, Lawrence A.; Longstaffe, Frederick J. (eds.). Encyclopedia of sediments and Sedimentary rocks. Encyclopedia of Earth Science. Dordrecht, The Netherlands: Springer Science+Business Media B.V. pp. 139–42. doi:10.1007/3-540-31079-7_47. ISBN 978-0-87933-152-8. Retrieved 27 November 2022. 978-0-87933-152-8
Donahue, Miller & Shickluna 1977, pp. 101–02. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Bergaya, Faïza; Beneke, Klaus; Lagaly, Gerhard. "History and perspectives of clay science" (PDF). University of Kiel. Retrieved 4 December 2022. http://www.uni-kiel.de/anorg/lagaly/group/klausSchiver/clayhistory.pdf
Wilson, M. Jeff (1999). "The origin and formation of clay minerals in soils: past, present and future perspectives". Clay Minerals. 34 (1): 7–25. Bibcode:1999ClMin..34....7W. doi:10.1180/000985599545957. S2CID 140587736. Archived (PDF) from the original on 29 March 2018. Retrieved 4 December 2022. https://www.researchgate.net/publication/249852878
Simonson 1957, p. 19.
Churchman, G. Jock (1980). "Clay minerals formed from micas and chlorites in some New Zealand soils". Clay Minerals. 15 (1): 59–76. Bibcode:1980ClMin..15...59C. doi:10.1180/claymin.1980.015.1.05. S2CID 129042178. Retrieved 4 December 2022. https://booksc.me/book/71256143/6cbe9e
Ross, G. J. (1980). "Mineralogical, physical, and chemical characteristics of amorphous constituents in some podzolic soils from British Columbia". Canadian Journal of Soil Science. 60 (1): 31–43. doi:10.4141/cjss80-004. Retrieved 4 December 2022. https://cdnsciencepub.com/doi/pdf/10.4141/cjss80-004
Donahue, Miller & Shickluna 1977, p. 102. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
"The clay mineral group". Amethyst Galleries, Inc., Orlando, Florida. Retrieved 11 December 2022. http://www.galleries.com/Clays_Group
Schulze, Darrell G. (2005). "Clay minerals" (PDF). In Hillel, Daniel (ed.). Encyclopedia of soils in the environment. Amsterdam: Academic Press. pp. 246–54. doi:10.1016/b0-12-348530-4/00189-2. ISBN 9780123485304. Retrieved 11 December 2022. 9780123485304
Russell 1957, p. 33.
Tambach, Tim J.; Bolhuis, Peter G.; Hensen, Emiel J.M.; Smit, Berend (2006). "Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states" (PDF). Langmuir. 22 (3): 1223–34. doi:10.1021/la051367q. PMID 16430287. Archived (PDF) from the original on 3 November 2018. Retrieved 11 December 2022. https://infoscience.epfl.ch/record/200741/files/Tambach-2006-Hysteresis%20in%20Clay%20S.pdf
Donahue, Miller & Shickluna 1977, pp. 102–07. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Donahue, Miller & Shickluna 1977, pp. 101–07. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Aylmore, L.A. Graham; Quirk, James P. (1971). "Domains and quasicrystalline regions in clay systems". Soil Science Society of America Journal. 35 (4): 652–54. Bibcode:1971SSASJ..35..652Q. doi:10.2136/sssaj1971.03615995003500040046x. Retrieved 11 December 2022. https://www.researchgate.net/publication/285159912
Barton, Christopher D.; Karathanasis, Anastasios D. (2002). "Clay minerals" (PDF). In Lal, Rattan (ed.). Encyclopedia of Soil Science. New York: Marcel Dekker. pp. 187–92. Retrieved 11 December 2022. https://www.srs.fs.usda.gov/pubs/ja/ja_barton002.pdf
Barton, Christopher D.; Karathanasis, Anastasios D. (2002). "Clay minerals" (PDF). In Lal, Rattan (ed.). Encyclopedia of Soil Science. New York: Marcel Dekker. pp. 187–92. Retrieved 11 December 2022. https://www.srs.fs.usda.gov/pubs/ja/ja_barton002.pdf
Schoonheydt, Robert A.; Johnston, Cliff T. (2011). "The surface properties of clay minerals". In Brigatti, Maria Franca; Mottana, Annibale (eds.). Layered mineral structures and their application in advanced technologies. Twickenham, United Kingdom: Mineralogical Society of Great Britain & Ireland. pp. 337–73. Retrieved 11 December 2022. https://www.researchgate.net/publication/280884094
Donahue, Miller & Shickluna 1977, p. 107. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Simonson 1957, pp. 20–21.
Lagaly, Gerhard (1979). "The "layer charge" of regular interstratified 2:1 clay minerals". Clays and Clay Minerals. 27 (1): 1–10. Bibcode:1979CCM....27....1L. doi:10.1346/CCMN.1979.0270101. S2CID 46978307. Retrieved 11 December 2022. https://booksc.me/book/76790232/4bdc0b
Eirish, M. V.; Tret'yakova, L. I. (1970). "The role of sorptive layers in the formation and change of the crystal structure of montmorillonite". Clay Minerals. 8 (3): 255–66. Bibcode:1970ClMin...8..255E. doi:10.1180/claymin.1970.008.3.03. S2CID 96728609. Archived (PDF) from the original on 19 July 2018. Retrieved 11 December 2022. https://booksc.me/book/75935923/486bbc
Tardy, Yves; Bocquier, Gérard; Paquet, Hélène; Millot, Georges (1973). "Formation of clay from granite and its distribution in relation to climate and topography". Geoderma. 10 (4): 271–84. Bibcode:1973Geode..10..271T. doi:10.1016/0016-7061(73)90002-5. Retrieved 11 December 2022. https://booksc.me/book/16110423/221e98
Donahue, Miller & Shickluna 1977, p. 108. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Russell 1957, pp. 33–34.
Coleman & Mehlich 1957, p. 74.
Meunier, Alain; Velde, Bruce (2004). "The geology of illite". Illite: origins, evolution and metamorphism (PDF). Berlin, Germany: Springer. pp. 63–143. doi:10.1007/978-3-662-07850-1_3. ISBN 978-3-642-05806-6. Retrieved 18 December 2022. 978-3-642-05806-6
Donahue, Miller & Shickluna 1977, pp. 108–10. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Russell 1957, pp. 33–34.
Dean 1957, p. 82.
Allison 1957, p. 90.
Reitemeier 1957, p. 103.
Norrish, Keith; Rausell-Colom, José Antonio (1961). "Low-angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite". Clays and Clay Minerals. 10 (1): 123–49. Bibcode:1961CCM....10..123N. doi:10.1346/CCMN.1961.0100112. https://link.springer.com/article/10.1346/CCMN.1961.0100112
Donahue, Miller & Shickluna 1977, p. 110. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Coleman & Mehlich 1957, p. 73.
Allison 1957, p. 90.
Reitemeier 1957, p. 103.
Moore, Duane M.; Reynolds, Robert C. Jr (1997). X-ray diffraction and the identification and analysis of clay minerals (PDF) (Second ed.). Oxford, United Kingdom: Oxford University Press. Retrieved 18 December 2022. http://www.labpku.com/UploadFiles/2014-01/admin/2014011016073967283.pdf
Donahue, Miller & Shickluna 1977, p. 110. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Holmes & Brown 1957, p. 112.
Karathanasis, Anastasios D.; Hajek, Benjamin F. (1983). "Transformation of smectite to kaolinite in naturally acid soil systems: structural and thermodynamic considerations". Soil Science Society of America Journal. 47 (1): 158–63. Bibcode:1983SSASJ..47..158K. doi:10.2136/sssaj1983.03615995004700010031x. Retrieved 18 December 2022. https://booksc.me/book/23108348/7070d2
Tombácz, Etelka; Szekeres, Márta (2006). "Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite". Applied Clay Science. 34 (1–4): 105–24. Bibcode:2006ApCS...34..105T. doi:10.1016/j.clay.2006.05.009. Retrieved 18 December 2022. https://www.academia.edu/11482380
Coles, Cynthia A.; Yong, Raymond N. (2002). "Aspects of kaolinite characterization and retention of Pb and Cd". Applied Clay Science. 22 (1–2): 39–45. Bibcode:2002ApCS...22...39C. doi:10.1016/S0169-1317(02)00110-2. Archived (PDF) from the original on 24 February 2019. Retrieved 18 December 2022. https://booksc.me/book/17824992/c23170
Fisher, G. Burch; Ryan, Peter C. (2006). "The smectite-to-disordered kaolinite transition in a tropical soil chronosequence, Pacific coast, Costa Rica". Clays and Clay Minerals. 54 (5): 571–86. Bibcode:2006CCM....54..571F. doi:10.1346/CCMN.2006.0540504. S2CID 14578882. Retrieved 18 December 2022. https://www.researchgate.net/publication/240744358
Donahue, Miller & Shickluna 1977, p. 111. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Russell 1957, p. 33.
Coleman & Mehlich 1957, p. 74.
Dean 1957, p. 82.
Olsen & Fried 1957, p. 96.
Reitemeier 1957, p. 101.
Hamdi-Aïssa, Belhadj; Vallès, Vincent; Aventurier, Alain; Ribolzi, Olivier (2004). "Soils and brine geochemistry and mineralogy of hyperarid Desert Playa, Ouargla Basin, Algerian Sahara". Arid Land Research and Management. 18 (2): 103–26. Bibcode:2004ALRM...18..103H. doi:10.1080/1532480490279656. S2CID 11444080. Retrieved 1 January 2023. https://www.researchgate.net/publication/233230446
Shoji, Sadao; Saigusa, Masahiko (1977). "Amorphous clay materials of Towada Ando soils". Soil Science and Plant Nutrition. 23 (4): 437–55. Bibcode:1977SSPN...23..437S. doi:10.1080/00380768.1977.10433063. https://doi.org/10.1080%2F00380768.1977.10433063
Donahue, Miller & Shickluna 1977, p. 111. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Tardy, Yves; Nahon, Daniel (1985). "Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe3+-kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation" (PDF). American Journal of Science. 285 (10): 865–903. doi:10.2475/ajs.285.10.865. Retrieved 1 January 2023. https://earth.geology.yale.edu/~ajs/1985/10.1985.01.Tardy.pdf
Nieuwenhuyse, André; Verburg, Paul S.J.; Jongmans, Antoine G. (2000). "Mineralogy of a soil chronosequence on andesitic lava in humid tropical Costa Rica". Geoderma. 98 (1–2): 61–82. Bibcode:2000Geode..98...61N. doi:10.1016/S0016-7061(00)00052-5. Retrieved 1 January 2023. https://booksc.me/book/17535563/a123fb
Hunt, James F.; Ohno, Tsutomu; He, Zhongqi; Honeycutt, C. Wayne; Dail, D. Bryan (2007). "Inhibition of phosphorus sorption to goethite, gibbsite, and kaolin by fresh and decomposed organic matter". Biology and Fertility of Soils. 44 (2): 277–88. Bibcode:2007BioFS..44..277H. doi:10.1007/s00374-007-0202-1. S2CID 29681161. Retrieved 8 January 2023. https://naldc.nal.usda.gov/download/35758/PDF
Shamshuddin, Jusop; Anda, Markus (2008). "Charge properties of soils in Malaysia dominated by kaolinite, gibbsite, goethite and hematite". Bulletin of the Geological Society of Malaysia. 54: 27–31. doi:10.7186/bgsm54200805. https://doi.org/10.7186%2Fbgsm54200805
Donahue, Miller & Shickluna 1977, pp. 103–12. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Simonson 1957, pp. 18, 21–24, 29.
Russell 1957, pp. 32, 35.
Paul, Eldor A.; Campbell, Colin A.; Rennie, David A.; McCallum, Kenneth J. (1964). "Investigations of the dynamics of soil humus utilizing carbon dating techniques" (PDF). Transactions of the 8th International Congress of Soil Science, Bucharest, Romania, 1964. Bucharest, Romania: Publishing House of the Academy of the Socialist Republic of Romania. pp. 201–08. Retrieved 8 January 2023. http://www.nrel.colostate.edu/assets/nrel_files/labs/paul-lab/docs/NREL_Paul_Paul_8th_ICSS.pdf
Bin, Gao; Cao, Xinde; Dong, Yan; Luo, Yongming; Ma, Lena Q. (2011). "Colloid deposition and release in soils and their association with heavy metals". Critical Reviews in Environmental Science and Technology. 41 (4): 336–72. Bibcode:2011CREST..41..336B. doi:10.1080/10643380902871464. S2CID 32879709. Retrieved 8 January 2023. https://booksc.me/book/35068414/69879c
Six, Johan; Frey, Serita D.; Thiet, Rachel K.; Batten, Katherine M. (2006). "Bacterial and fungal contributions to carbon sequestration in agroecosystems". Soil Science Society of America Journal. 70 (2): 555–69. Bibcode:2006SSASJ..70..555S. doi:10.2136/sssaj2004.0347. S2CID 39575537. Archived (PDF) from the original on 22 July 2020. Retrieved 8 January 2023. /wiki/Serita_Frey
Donahue, Miller & Shickluna 1977, p. 112. - Donahue, Roy Luther; Miller, Raymond W.; Shickluna, John C. (1977). Soils: An Introduction to Soils and Plant Growth. Prentice-Hall. ISBN 978-0-13-821918-5. https://archive.org/details/soilsintroductio00dona
Russell 1957, p. 35.
Allaway 1957, p. 69.
Thornton, Peter E.; Doney, Scott C.; Lindsay, Konkel; Moore, J. Keith; Mahowald, Natalie; Randerson, James T.; Fung, Inez; Lamarque, Jean-François; Feddema, Johannes J.; Lee, Y. Hanna (2009). "Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model". Biogeosciences. 6 (10): 2099–120. Bibcode:2009BGeo....6.2099T. doi:10.5194/bg-6-2099-2009. hdl:1808/9294. https://doi.org/10.5194%2Fbg-6-2099-2009
Morgan, Jack A.; Follett, Ronald F.; Allen Jr, Leon Hartwell; Del Grosso, Stephen; Derner, Justin D.; Dijkstra, Feike; Franzluebbers, Alan; Fry, Robert; Paustian, Keith; Schoeneberger, Michele M. (2010). "Carbon sequestration in agricultural lands of the United States". Journal of Soil and Water Conservation. 65 (1): 6A – 13A. doi:10.2489/jswc.65.1.6A. https://doi.org/10.2489%2Fjswc.65.1.6A
Parton, Willam J.; Scurlock, Jonathan M. O.; Ojima, Dennis S.; Schimel, David; Hall, David O.; The SCOPEGRAM Group (1995). "Impact of climate change on grassland production and soil carbon worldwide". Global Change Biology. 1 (1): 13–22. Bibcode:1995GCBio...1...13P. doi:10.1111/j.1365-2486.1995.tb00002.x. Retrieved 8 January 2023. https://www.researchgate.net/publication/233714480
Schuur, Edward A. G.; Vogel, Jason G.; Crummer, Kathryn G.; Lee, Hanna; Sickman, James O.; Osterkamp, Tom E. (2009). "The effect of permafrost thaw on old carbon release and net carbon exchange from tundra". Nature. 459 (7246): 556–59. Bibcode:2009Natur.459..556S. doi:10.1038/nature08031. PMID 19478781. S2CID 4396638. Retrieved 8 January 2023. https://www.academia.edu/18296573
Wieder, William R.; Cleveland, Cory C.; Townsend, Alan R. (2009). "Controls over leaf litter decomposition in wet tropical forests". Ecology. 90 (12): 3333–41. Bibcode:2009Ecol...90.3333W. doi:10.1890/08-2294.1. PMID 20120803. Retrieved 8 January 2023. https://scholarworks.umt.edu/cgi/viewcontent.cgi?article=1009&context=decs_pubs
Stark, Nellie M.; Lordan, Carl F. (1978). "Nutrient retention by the root mat of an Amazonian rain forest". Ecology. 59 (3): 434–37. Bibcode:1978Ecol...59..434S. doi:10.2307/1936571. JSTOR 1936571. Archived (PDF) from the original on 31 March 2019. Retrieved 8 January 2023. https://booksc.me/book/37513756/2c1749
Liang, Biqing; Lehmann, Johannes; Solomon, Dawit; Kinyangi, James; Grossman, Julie; O'Neill, Brendan; Skjemstad, Jan O.; Thies, Janice; Luizaõ, Flávio J.; Petersen, Julie; Neves, Eduardo G. (2006). "Black carbon increases cation exchange capacity in soils" (PDF). Soil Science Society of America Journal. 70 (5): 1719–30. Bibcode:2006SSASJ..70.1719L. doi:10.2136/sssaj2005.0383. Retrieved 8 January 2023. http://xrm.phys.northwestern.edu/research/pdf_papers/2006/liang_sssaj_2006.pdf
Neves, Eduardo G.; Petersen, James B.; Bartone, Robert N.; da Silva, Carlos Augusto (2003). "Historical and socio-cultural origins of Amazonian Dark Earth". In Lehmann, Johannes; Kern, Dirse C.; Glaser, Bruno; Woods, William I. (eds.). Amazonian Dark Earths: origin, properties, management. Berlin, Germany: Springer Science & Business Media. pp. 29–50. Retrieved 8 January 2023. https://www.researchgate.net/publication/226546157
Ponge, Jean-François; Topoliantz, Stéphanie; Ballof, Sylvain; Rossi, Jean-Pierre; Lavelle, Patrick; Betsch, Jean-Marie & Gaucher, Philippe (2006). "Ingestion of charcoal by the Amazonian earthworm Pontoscolex corethrurus: a potential for tropical soil fertility". Soil Biology and Biochemistry. 38 (7): 2008–09. doi:10.1016/j.soilbio.2005.12.024. Retrieved 8 January 2023. https://www.academia.edu/44852813
Lehmann, Johannes. "Terra Preta de Indio". Cornell University, Department of Crop and Soil Sciences. Archived from the original on 24 April 2013. Retrieved 8 January 2023. http://www.css.cornell.edu/faculty/lehmann/research/terra%20preta/terrapretamain.html
Lehmann, Johannes; Rondon, Marco (2006). "Bio-char soil management on highly weathered soils in the humid tropics". In Uphoff, Norman; Ball, Andrew S.; Fernandes, Erick; Herren, Hans; Husson, Olivier; Laing, Mark; Palm, Cheryl; Pretty, Jules; Sánchez, Pedro; Sanginga, Nteranya; Thies, Janice (eds.). Biological approaches to sustainable soil systems. Boca Raton, Florida: CRC Press. pp. 517–30. Retrieved 8 January 2023. https://www.researchgate.net/publication/201998979
Yu, Xiangyang; Pan, Ligang; Ying, Guangguo; Kookana, Rai S. (2010). "Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars". Journal of Environmental Sciences. 22 (4): 615–20. Bibcode:2010JEnvS..22..615Y. doi:10.1016/S1001-0742(09)60153-4. PMID 20617740. Archived from the original on 22 July 2020. Retrieved 8 January 2023. https://www.jesc.ac.cn/jesc_en/ch/reader/create_pdf.aspx?file_no=2010220420
Whitman, Thea; Lehmann, Johannes (2009). "Biochar: one way forward for soil carbon in offset mechanisms in Africa?" (PDF). Environmental Science and Policy. 12 (7): 1024–27. Bibcode:2009ESPol..12.1024W. doi:10.1016/j.envsci.2009.07.013. S2CID 14697278. Archived (PDF) from the original on 4 March 2019. Retrieved 8 January 2023. https://www.css.cornell.edu/faculty/lehmann/publ/EnvSciPolicy%2012,%201024-1027,%202009,%20Whitman.pdf
Mwampamba, Tuyeni Heita (2007). "Has the woodfuel crisis returned? Urban charcoal consumption in Tanzania and its implications to present and future forest availability". Energy Policy. 35 (8): 4221–34. Bibcode:2007EnPol..35.4221M. doi:10.1016/j.enpol.2007.02.010. Retrieved 8 January 2023. https://www.researchgate.net/publication/222557870