The amount of chrysin in honey from various plant sources is about 0.2 mg per 100 g. Chrysin is typically found at higher amounts in propolis than in honey. A 2010 study found the amount of chrysin was 0.10 mg/kg in honeydew honey, and 5.3 mg/kg in forest honeys. A 2010 study found the amount of chrysin in propolis was as much as 28 g/L. A 2013 study found the amount of chrysin in various mushrooms from the island of Lesvos, Greece, varied between 0.17 mg/kg in Lactarius deliciosus to 0.34 mg/kg in Suillus bellinii.
There is insufficient information to determine how long chrysin has been used in pharmacy compounding. Chrysin is used as an ingredient in dietary supplements, but there is no information on systemic exposure from topical application. As of 2016, there was no evidence to support any effect of oral chrysin on testosterone levels, or an any disease-modifying activity with oral or topical formulations.
A daily consumed amount of chrysin of 0.5 to 3 g is considered safe. As of 2016, there was no toxicity attributable to chrysin in clinical trials or adverse event reporting. As of 2016, clinical safety issues have not been identified. As of 2016, nonclinical data suggest potential concerns. In 2016, the US Food and Drug Administration did not recommend chrysin be included on the list of bulk drug substances that can be used in compounding under section 503A of the Federal Food, Drug, and Cosmetic Act based on consideration of the following criteria: (1) physicochemical characterization; (2) safety; (3) effectiveness; and (4) historical use of the substance in compounding.
As of 2016, there is no evidence for chrysin being used in human clinical applications. Research showed that orally administered chrysin does not have clinical activity as an aromatase inhibitor.
Nanoformulations of polyphenols, including chrysin, are made using various carrier methods, such as liposomes and nanocapsules.
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
Morissette M, Litim N, Di Paolo T (18 May 2017). "Chapter 2 – Natural Phytoestrogens: A Class of Promising Neuroprotective Agents for Parkinson Disease". In Brahmachari G (ed.). Discovery and Development of Neuroprotective Agents from Natural Products. Elsevier Science. p. 32. doi:10.1016/B978-0-12-809593-5.00002-1. ISBN 978-0-12-809769-4. 978-0-12-809769-4
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
FDA 2016, p. 3. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
FDA 2016, p. 8. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
FDA 2016, p. 13. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
Samarghandian S, Farkhondeh T, Azimi-Nezhad M (2017). "Protective Effects of Chrysin Against Drugs and Toxic Agents". Dose-response. 15 (2): 1559325817711782. doi:10.1177/1559325817711782. PMC 5484430. PMID 28694744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484430
Morissette M, Litim N, Di Paolo T (18 May 2017). "Chapter 2 – Natural Phytoestrogens: A Class of Promising Neuroprotective Agents for Parkinson Disease". In Brahmachari G (ed.). Discovery and Development of Neuroprotective Agents from Natural Products. Elsevier Science. p. 32. doi:10.1016/B978-0-12-809593-5.00002-1. ISBN 978-0-12-809769-4. 978-0-12-809769-4
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
Zhandi, M; Ansari, M; Roknabadi, P; Zare Shahneh, A; Sharafi, M (2017). "Orally administered Chrysin improves post-thawed sperm quality and fertility of rooster". Reproduction in Domestic Animals. 52 (6): 1004–1010. doi:10.1111/rda.13014. ISSN 0936-6768. PMID 28695606. S2CID 28744455. /wiki/Doi_(identifier)
Samarghandian S, Farkhondeh T, Azimi-Nezhad M (2017). "Protective Effects of Chrysin Against Drugs and Toxic Agents". Dose-response. 15 (2): 1559325817711782. doi:10.1177/1559325817711782. PMC 5484430. PMID 28694744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484430
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
Istasse T, Jacquet N, Berchem T, Haubruge E, Nguyen BK, Richel A (2016). "Extraction of Honey Polyphenols: Method Development and Evidence of Cis Isomerization". Analytical Chemistry Insights. 11: 49–57. doi:10.4137/ACI.S39739. PMC 4981221. PMID 27547032. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981221
Premratanachai P, Chanchao C (2014). "Review of the anticancer activities of bee products". Asian Pacific Journal of Tropical Biomedicine. 4 (5): 337–44. doi:10.12980/APJTB.4.2014C1262. PMC 3985046. PMID 25182716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985046
Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM (2015). "Neuroprotective effects of chrysin: From chemistry to medicine". Neurochemistry International. 90: 224–31. doi:10.1016/j.neuint.2015.09.006. PMID 26386393. S2CID 24391203. /wiki/Doi_(identifier)
Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM (2015). "Neuroprotective effects of chrysin: From chemistry to medicine". Neurochemistry International. 90: 224–31. doi:10.1016/j.neuint.2015.09.006. PMID 26386393. S2CID 24391203. /wiki/Doi_(identifier)
Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM (2015). "Neuroprotective effects of chrysin: From chemistry to medicine". Neurochemistry International. 90: 224–31. doi:10.1016/j.neuint.2015.09.006. PMID 26386393. S2CID 24391203. /wiki/Doi_(identifier)
Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM (2015). "Neuroprotective effects of chrysin: From chemistry to medicine". Neurochemistry International. 90: 224–31. doi:10.1016/j.neuint.2015.09.006. PMID 26386393. S2CID 24391203. /wiki/Doi_(identifier)
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM (2015). "Neuroprotective effects of chrysin: From chemistry to medicine". Neurochemistry International. 90: 224–31. doi:10.1016/j.neuint.2015.09.006. PMID 26386393. S2CID 24391203. /wiki/Doi_(identifier)
Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM (2015). "Neuroprotective effects of chrysin: From chemistry to medicine". Neurochemistry International. 90: 224–31. doi:10.1016/j.neuint.2015.09.006. PMID 26386393. S2CID 24391203. /wiki/Doi_(identifier)
Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM (2015). "Neuroprotective effects of chrysin: From chemistry to medicine". Neurochemistry International. 90: 224–31. doi:10.1016/j.neuint.2015.09.006. PMID 26386393. S2CID 24391203. /wiki/Doi_(identifier)
FDA 2016, p. 11. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
FDA 2016, p. 3. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
FDA 2016, p. 8. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
FDA 2016, p. 9. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
Samarghandian S, Farkhondeh T, Azimi-Nezhad M (2017). "Protective Effects of Chrysin Against Drugs and Toxic Agents". Dose-response. 15 (2): 1559325817711782. doi:10.1177/1559325817711782. PMC 5484430. PMID 28694744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484430
FDA 2016, p. 10. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
FDA 2016, p. 12. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
FDA 2016, p. 12. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
FDA 2016, p. 13. - Brave M (23 June 2016). "Chrysin" (PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PharmacyCompoundingAdvisoryCommittee/UCM509958.pdf
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018. https://pubchem.ncbi.nlm.nih.gov/compound/chrysin#section=Top
Saarinen N, Joshi SC, Ahotupa M, Li X, Ammälä J, Mäkelä S, Santti R (September 2001). "No evidence for the in vivo activity of aromatase-inhibiting flavonoids". The Journal of Steroid Biochemistry and Molecular Biology. 78 (3): 231–9. doi:10.1016/S0960-0760(01)00098-X. PMID 11595503. S2CID 25787862. /wiki/Doi_(identifier)
Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, Abdollahi M (2017). "Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective". International Journal of Nanomedicine. 12: 2689–2702. doi:10.2147/IJN.S131973. PMC 5388197. PMID 28435252. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388197