The term 'transcendentally transcendental' was introduced by E. H. Moore in 1896; the term 'hypertranscendental' was introduced by D. D. Morduhai-Boltovskoi in 1914.12
One standard definition (there are slight variants) defines solutions of differential equations of the form
where F {\displaystyle F} is a polynomial with constant coefficients, as algebraically transcendental or differentially algebraic. Transcendental functions which are not algebraically transcendental are transcendentally transcendental. Hölder's theorem shows that the gamma function is in this category.345
Hypertranscendental functions usually arise as the solutions to functional equations, for example the gamma function.
D. D. Mordykhai-Boltovskoi, "On hypertranscendence of the function ξ(x, s)", Izv. Politekh. Inst. Warsaw 2:1-16 (1914), cited in Anatoly A. Karatsuba, S. M. Voronin, The Riemann Zeta-Function, 1992, ISBN 3-11-013170-6, p. 390 /wiki/ISBN_(identifier) ↩
Morduhaĭ-Boltovskoĭ (1949) - Morduhaĭ-Boltovskoĭ, D. (1949), "On hypertranscendental functions and hypertranscendental numbers", Doklady Akademii Nauk SSSR, New Series (in Russian), 64: 21–24, MR 0028347 https://mathscinet.ams.org/mathscinet-getitem?mr=0028347 ↩
Eliakim H. Moore, "Concerning Transcendentally Transcendental Functions", Mathematische Annalen 48:1-2:49-74 (1896) doi:10.1007/BF01446334 /wiki/Eliakim_H._Moore ↩
R. D. Carmichael, "On Transcendentally Transcendental Functions", Transactions of the American Mathematical Society 14:3:311-319 (July 1913) full text JSTOR 1988599 doi:10.1090/S0002-9947-1913-1500949-2 /wiki/Robert_Daniel_Carmichael ↩
Lee A. Rubel, "A Survey of Transcendentally Transcendental Functions", The American Mathematical Monthly 96:777-788 (November 1989) JSTOR 2324840 /wiki/JSTOR_(identifier) ↩