Let a random variable ξ be normally distributed and admit a decomposition as a sum ξ=ξ1+ξ2 of two independent random variables. Then the summands ξ1 and ξ2 are normally distributed as well.
A proof of Cramér's decomposition theorem uses the theory of entire functions.
Lévy, Paul (1935). "Propriétés asymptotiques des sommes de variables aléatoires indépendantes ou enchaînées". J. Math. Pures Appl. 14: 347–402. ↩
Cramer, Harald (1936). "Über eine Eigenschaft der normalen Verteilungsfunktion". Mathematische Zeitschrift. 41 (1): 405–414. doi:10.1007/BF01180430. /wiki/Doi_(identifier) ↩
Linnik, Yu. V.; Ostrovskii, I. V. (1977). Decomposition of random variables and vectors. Providence, R. I.: Translations of Mathematical Monographs, 48. American Mathematical Society. /wiki/Yuri_Linnik ↩