Suppose S i ∼ W p ( n i , Σ ) , i = 1 , … , r + 1 {\displaystyle S_{i}\sim W_{p}\left(n_{i},\Sigma \right),i=1,\ldots ,r+1} are independently distributed Wishart p × p {\displaystyle p\times p} positive definite matrices. Then, defining U i = S − 1 / 2 S i ( S − 1 / 2 ) T {\displaystyle U_{i}=S^{-1/2}S_{i}\left(S^{-1/2}\right)^{T}} (where S = ∑ i = 1 r + 1 S i {\displaystyle S=\sum _{i=1}^{r+1}S_{i}} is the sum of the matrices and S 1 / 2 ( S − 1 / 2 ) T {\displaystyle S^{1/2}\left(S^{-1/2}\right)^{T}} is any reasonable factorization of S {\displaystyle S} ), we have
If ( U 1 , … , U r ) ∼ D p ( a 1 , … , a r + 1 ) {\displaystyle \left(U_{1},\ldots ,U_{r}\right)\sim D_{p}\left(a_{1},\ldots ,a_{r+1}\right)} , and if s ≤ r {\displaystyle s\leq r} , then:
Also, with the same notation as above, the density of ( U s + 1 , … , U r ) | ( U 1 , … , U s ) {\displaystyle \left(U_{s+1},\ldots ,U_{r}\right)\left|\left(U_{1},\ldots ,U_{s}\right)\right.} is given by
where we write U r + 1 = I p − ∑ i = 1 r U i {\displaystyle U_{r+1}=I_{p}-\sum _{i=1}^{r}U_{i}} .
Suppose ( U 1 , … , U r ) ∼ D p ( a 1 , … , a r + 1 ) {\displaystyle \left(U_{1},\ldots ,U_{r}\right)\sim D_{p}\left(a_{1},\ldots ,a_{r+1}\right)} and suppose that S 1 , … , S t {\displaystyle S_{1},\ldots ,S_{t}} is a partition of [ r + 1 ] = { 1 , … r + 1 } {\displaystyle \left[r+1\right]=\left\{1,\ldots r+1\right\}} (that is, ∪ i = 1 t S i = [ r + 1 ] {\displaystyle \cup _{i=1}^{t}S_{i}=\left[r+1\right]} and S i ∩ S j = ∅ {\displaystyle S_{i}\cap S_{j}=\emptyset } if i ≠ j {\displaystyle i\neq j} ). Then, writing U ( j ) = ∑ i ∈ S j U i {\displaystyle U_{(j)}=\sum _{i\in S_{j}}U_{i}} and a ( j ) = ∑ i ∈ S j a i {\displaystyle a_{(j)}=\sum _{i\in S_{j}}a_{i}} (with U r + 1 = I p − ∑ i = 1 r U r {\displaystyle U_{r+1}=I_{p}-\sum _{i=1}^{r}U_{r}} ), we have:
Suppose ( U 1 , … , U r ) ∼ D p ( a 1 , … , a r + 1 ) {\displaystyle \left(U_{1},\ldots ,U_{r}\right)\sim D_{p}\left(a_{1},\ldots ,a_{r+1}\right)} . Define
where U 11 ( i ) {\displaystyle U_{11(i)}} is p 1 × p 1 {\displaystyle p_{1}\times p_{1}} and U 22 ( i ) {\displaystyle U_{22(i)}} is p 2 × p 2 {\displaystyle p_{2}\times p_{2}} . Writing the Schur complement U 22 ⋅ 1 ( i ) = U 21 ( i ) U 11 ( i ) − 1 U 12 ( i ) {\displaystyle U_{22\cdot 1(i)}=U_{21(i)}U_{11(i)}^{-1}U_{12(i)}} we have
and
A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall.