Menu
Home
People
Places
Arts
History
Plants & Animals
Science
Life & Culture
Technology
Reference.org
Duality theory for distributive lattices
open-in-new
See also
Representation theorem
Birkhoff's representation theorem
Stone's representation theorem for Boolean algebras
Stone duality
Esakia duality
Notes
Priestley, H. A.
(1970). Representation of distributive lattices by means of ordered Stone spaces.
Bull. London Math. Soc.
, (2) 186–190.
Priestley, H. A. (1972). Ordered topological spaces and the representation of distributive lattices.
Proc. London Math. Soc.
, 24(3) 507–530.
Stone, M. (1938).
Topological representation of distributive lattices and Brouwerian logics.
Casopis Pest. Mat. Fys., 67 1–25.
Cornish, W. H. (1975). On H. Priestley's dual of the category of bounded distributive lattices.
Mat. Vesnik
, 12(27) (4) 329–332.
M. Hochster (1969). Prime ideal structure in commutative rings.
Trans. Amer. Math. Soc.
, 142 43–60
Johnstone, P. T.
(1982).
Stone spaces
. Cambridge University Press, Cambridge.
ISBN
0-521-23893-5.
Jung, A. and Moshier, M. A. (2006). On the bitopological nature of Stone duality.
Technical Report CSR-06-13
, School of Computer Science, University of Birmingham.
Bezhanishvili, G., Bezhanishvili, N., Gabelaia, D., Kurz, A. (2010). Bitopological duality for distributive lattices and Heyting algebras.
Mathematical Structures in Computer Science
, 20.
Dickmann, Max; Schwartz, Niels; Tressl, Marcus (2019).
Spectral Spaces
. New Mathematical Monographs. Vol. 35. Cambridge:
Cambridge University Press
.
doi
:
10.1017/9781316543870
.
ISBN
9781107146723.
References
Stone (1938)
↩
Stone (1938), Johnstone (1982)
↩
Stone (1938), Johnstone (1982)
↩
Bezhanishvili et al. (2010)
↩
Priestley (1970)
↩
Bezhanishvili et al. (2010)
↩