A time-integration scheme is said to be stable if there exists an integration time-step Δ t 0 > 0 {\displaystyle \Delta t_{0}>0} so that for any Δ t ∈ ( 0 , Δ t 0 ] {\displaystyle \Delta t\in (0,\Delta t_{0}]} , a finite variation of the state vector q n {\displaystyle q_{n}} at time t n {\displaystyle t_{n}} induces only a non-increasing variation of the state-vector q n + 1 {\displaystyle q_{n+1}} calculated at a subsequent time t n + 1 {\displaystyle t_{n+1}} . Assume the time-integration scheme is
q n + 1 = A ( Δ t ) q n + g n + 1 ( Δ t ) {\displaystyle q_{n+1}=A(\Delta t)q_{n}+g_{n+1}(\Delta t)}
The linear stability is equivalent to ρ ( A ( Δ t ) ) ≤ 1 {\displaystyle \rho (A(\Delta t))\leq 1} , here ρ ( A ( Δ t ) ) {\displaystyle \rho (A(\Delta t))} is the spectral radius of the update matrix A ( Δ t ) {\displaystyle A(\Delta t)} .
For the linear structural equation
M u ¨ + C u ˙ + K u = f ext {\displaystyle M{\ddot {u}}+C{\dot {u}}+Ku=f^{\textrm {ext}}\,}
here K {\displaystyle K} is the stiffness matrix. Let q n = [ u ˙ n , u n ] {\displaystyle q_{n}=[{\dot {u}}_{n},u_{n}]} , the update matrix is A = H 1 − 1 H 0 {\displaystyle A=H_{1}^{-1}H_{0}} , and
H 1 = [ M + γ Δ t C γ Δ t K β Δ t 2 C M + β Δ t 2 K ] H 0 = [ M − ( 1 − γ ) Δ t C − ( 1 − γ ) Δ t K − ( 1 2 − β ) Δ t 2 C + Δ t M M − ( 1 2 − β ) Δ t 2 K ] {\displaystyle {\begin{aligned}H_{1}={\begin{bmatrix}M+\gamma \Delta tC&\gamma \Delta tK\\\beta \Delta t^{2}C&M+\beta \Delta t^{2}K\end{bmatrix}}\qquad H_{0}={\begin{bmatrix}M-(1-\gamma )\Delta tC&-(1-\gamma )\Delta tK\\-({\frac {1}{2}}-\beta )\Delta t^{2}C+\Delta tM&M-({\frac {1}{2}}-\beta )\Delta t^{2}K\end{bmatrix}}\end{aligned}}}
For undamped case ( C = 0 {\displaystyle C=0} ), the update matrix can be decoupled by introducing the eigenmodes u = e i ω i t x i {\displaystyle u=e^{i\omega _{i}t}x_{i}} of the structural system, which are solved by the generalized eigenvalue problem
ω 2 M x = K x {\displaystyle \omega ^{2}Mx=Kx\,}
For each eigenmode, the update matrix becomes
H 1 = [ 1 γ Δ t ω i 2 0 1 + β Δ t 2 ω i 2 ] H 0 = [ 1 − ( 1 − γ ) Δ t ω i 2 Δ t 1 − ( 1 2 − β ) Δ t 2 ω i 2 ] {\displaystyle {\begin{aligned}H_{1}={\begin{bmatrix}1&\gamma \Delta t\omega _{i}^{2}\\0&1+\beta \Delta t^{2}\omega _{i}^{2}\end{bmatrix}}\qquad H_{0}={\begin{bmatrix}1&-(1-\gamma )\Delta t\omega _{i}^{2}\\\Delta t&1-({\frac {1}{2}}-\beta )\Delta t^{2}\omega _{i}^{2}\end{bmatrix}}\end{aligned}}}
The characteristic equation of the update matrix is
λ 2 − ( 2 − ( γ + 1 2 ) η i 2 ) λ + 1 − ( γ − 1 2 ) η i 2 = 0 η i 2 = ω i 2 Δ t 2 1 + β ω i 2 Δ t 2 {\displaystyle \lambda ^{2}-\left(2-(\gamma +{\frac {1}{2}})\eta _{i}^{2}\right)\lambda +1-(\gamma -{\frac {1}{2}})\eta _{i}^{2}=0\,\qquad \eta _{i}^{2}={\frac {\omega _{i}^{2}\Delta t^{2}}{1+\beta \omega _{i}^{2}\Delta t^{2}}}}
As for the stability, we have
Explicit central difference scheme ( γ = 0.5 {\displaystyle \gamma =0.5} and β = 0 {\displaystyle \beta =0} ) is stable when ω Δ t ≤ 2 {\displaystyle \omega \Delta t\leq 2} .
Average constant acceleration (Middle point rule) ( γ = 0.5 {\displaystyle \gamma =0.5} and β = 0.25 {\displaystyle \beta =0.25} ) is unconditionally stable.
Newmark, Nathan M. (1959), "A method of computation for structural dynamics", Journal of the Engineering Mechanics Division, 85 (EM3) (3): 67–94, doi:10.1061/JMCEA3.0000098 /wiki/Nathan_M._Newmark ↩