Let R {\displaystyle R} be a commutative ring and V {\displaystyle V} , W {\displaystyle W} be modules over R {\displaystyle R} . A multilinear map of the form f : V n → W {\displaystyle f:V^{n}\to W} is said to be alternating if it satisfies the following equivalent conditions:
Let V , W {\displaystyle V,W} be vector spaces over the same field. Then a multilinear map of the form f : V n → W {\displaystyle f:V^{n}\to W} is alternating if it satisfies the following condition:
In a Lie algebra, the Lie bracket is an alternating bilinear map. The determinant of a matrix is a multilinear alternating map of the rows or columns of the matrix.
If any component x i {\displaystyle x_{i}} of an alternating multilinear map is replaced by x i + c x j {\displaystyle x_{i}+cx_{j}} for any j ≠ i {\displaystyle j\neq i} and c {\displaystyle c} in the base ring R {\displaystyle R} , then the value of that map is not changed.5
Every alternating multilinear map is antisymmetric,6 meaning that7 f ( … , x i , x i + 1 , … ) = − f ( … , x i + 1 , x i , … ) for any 1 ≤ i ≤ n − 1 , {\displaystyle f(\dots ,x_{i},x_{i+1},\dots )=-f(\dots ,x_{i+1},x_{i},\dots )\quad {\text{ for any }}1\leq i\leq n-1,} or equivalently, f ( x σ ( 1 ) , … , x σ ( n ) ) = ( sgn σ ) f ( x 1 , … , x n ) for any σ ∈ S n , {\displaystyle f(x_{\sigma (1)},\dots ,x_{\sigma (n)})=(\operatorname {sgn} \sigma )f(x_{1},\dots ,x_{n})\quad {\text{ for any }}\sigma \in \mathrm {S} _{n},} where S n {\displaystyle \mathrm {S} _{n}} denotes the permutation group of degree n {\displaystyle n} and sgn σ {\displaystyle \operatorname {sgn} \sigma } is the sign of σ {\displaystyle \sigma } .8 If n ! {\displaystyle n!} is a unit in the base ring R {\displaystyle R} , then every antisymmetric n {\displaystyle n} -multilinear form is alternating.
Given a multilinear map of the form f : V n → W , {\displaystyle f:V^{n}\to W,} the alternating multilinear map g : V n → W {\displaystyle g:V^{n}\to W} defined by g ( x 1 , … , x n ) := ∑ σ ∈ S n sgn ( σ ) f ( x σ ( 1 ) , … , x σ ( n ) ) {\displaystyle g(x_{1},\ldots ,x_{n})\mathrel {:=} \sum _{\sigma \in S_{n}}\operatorname {sgn}(\sigma )f(x_{\sigma (1)},\ldots ,x_{\sigma (n)})} is said to be the alternatization of f {\displaystyle f} .
Properties
Lang 2002, pp. 511–512 - Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Vol. 211 (revised 3rd ed.). Springer. ISBN 978-0-387-95385-4. OCLC 48176673. https://search.worldcat.org/oclc/48176673 ↩
Bourbaki 2007, A III.80, §4 - Bourbaki, N. (2007). Eléments de mathématique. Vol. Algèbre Chapitres 1 à 3 (reprint ed.). Springer. ↩
Dummit & Foote 2004, p. 436 - Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). Wiley. ↩
Rotman 1995, p. 235 - Rotman, Joseph J. (1995). An Introduction to the Theory of Groups. Graduate Texts in Mathematics. Vol. 148 (4th ed.). Springer. ISBN 0-387-94285-8. OCLC 30028913. https://search.worldcat.org/oclc/30028913 ↩
Tu 2011, p. 23 - Tu, Loring W. (2011). An Introduction to Manifolds. Springer-Verlag New York. ISBN 978-1-4419-7400-6. ↩