This curve is built iteratively by applying the Odd–Even Drawing rule to the Fibonacci word 0100101001001...:
For each digit at position k:
To a Fibonacci word of length F n {\displaystyle F_{n}} (the nth Fibonacci number) is associated a curve F n {\displaystyle {\mathcal {F}}_{n}} made of F n {\displaystyle F_{n}} segments. The curve displays three different aspects whether n is in the form 3k, 3k + 1, or 3k + 2.
Some of the Fibonacci word fractal's properties include:12
The juxtaposition of four F 3 k {\displaystyle F_{3k}} curves allows the construction of a closed curve enclosing a surface whose area is not null. This curve is called a "Fibonacci tile".
The Fibonacci snowflake is a Fibonacci tile defined by:3
with q 0 = ϵ {\displaystyle q_{0}=\epsilon } and q 1 = R {\displaystyle q_{1}=R} , L = {\displaystyle L=} "turn left" and R = {\displaystyle R=} "turn right", and R ¯ = L {\displaystyle {\overline {R}}=L} .
Several remarkable properties:45
Monnerot-Dumaine, Alexis (February 2009). "The Fibonacci word fractal", independent (hal.archives-ouvertes.fr). http://hal.archives-ouvertes.fr/hal-00367972/fr/ ↩
Hoffman, Tyler; Steinhurst, Benjamin (2016). "Hausdorff Dimension of Generalized Fibonacci Word Fractals". arXiv:1601.04786 [math.MG]. /wiki/ArXiv_(identifier) ↩
Blondin-Massé, Alexandre; Brlek, Srečko; Garon, Ariane; and Labbé, Sébastien (2009). "Christoffel and Fibonacci tiles", Lecture Notes in Computer Science: Discrete Geometry for Computer Imagery, p.67-8. Springer. ISBN 9783642043963. https://doi.org/10.1007%2F978-3-642-04397-0_7 ↩
A. Blondin-Massé, S. Labbé, S. Brlek, M. Mendès-France (2011). "Fibonacci snowflakes". http://www.slabbe.org/Publications/2011-fibo-snowflakes.pdf ↩