A photoionization microscope employs photoionization, along with quantum properties and principles, to measure atomic properties. The principle is to study the spatial distribution of electrons ejected from an atom in a situation in which the De Broglie wavelength becomes large enough to be observed on a macroscopic scale. An atom in an electric field is ionized by a focused laser. The electron is drawn toward a position-sensitive detector, and the current is measured as a function of position. The application of an electric field during photoionization allows confining the electron flux along one dimension.
Multiple classical paths lead from the atom to any point in the classically allowed region on the detector, and waves travelling along these paths produce an interference pattern. An infinite set of trajectory families lead to a complicated interference pattern on the detector. As such, photoionization microscopy relies on the existence of interference between various trajectories by which the electron moves from the atom to the plane of observation, for example, of a hydrogen atom in parallel electric and magnetic fields.
The idea stemmed from an experiment proposed by Demkov and colleagues in the early 1980s. The researchers suggested that electron waves could be imaged when interacting with a static electric field as long as the de Broglie Wavelength of these electrons was large enough. It was not until 1996 that anything resembling these ideas bore fruit. In 1996 a team of French researchers developed the first photodetachment microscope. It allowed for direct observation of the oscillatory structure of a wave function. Photodetachment is the removal of electrons from an atom using interactions with photons or other particles. Photodetachment microscopy made it possible to image the spatial distribution of the ejected electron. The microscope developed in 1996 was the first to image photodetachment rings of a negative Bromine ion. These images revealed interference between two electron waves on their way to the detector.
The same team of researchers that imaged the hydrogen electron's wave function are attempting to image helium. They report considerable differences, since helium has two electrons, which may enable them to 'see' entanglement.
The microscope first imaged a relief pattern of a glass plate. In one test, the pattern was 17 nanometers higher than the plate.
Entanglement-enhancement principles can be used to improve the image. Researchers are thereby able to overcome the Rayleigh criterion. This is ideal for studying biological tissues and opaque materials. However, the light intensity must be lowered to avoid damaging the sample.
In addition to biological tissues, high-precision optical phase measurements have applications such as gravitational wave detection, measurement of materials properties, as well as medical and biological sensing.
Squeezed light has also been used to improve nonlinear microscopy. Nonlinear microscopes use intense laser illumination, close to the levels at which biological damage can occur. This damage is a key barrier to improving their performance, preventing the intensity from being increased and therefore putting a hard limit on SNR. By using squeezed light in such a microscope, researchers have shown that this limit can be broken - that SNR beyond that achievable beneath photo-damage limits of regular microscopy can be achieved.
Intuitively, antibunching can be thought of as detection of ‘missing’ events of two photons emitted from every particle that cannot simultaneously emit two photons.[contradictory] It is therefore used to produce an image that would have been produced using photons with half the wavelength of the detected photons. By detecting N-photon events, the resolution can be improved by up to a factor of N over the diffraction limit.
In conventional fluorescence microscopes, antibunching information is ignored, as simultaneous detection of multiple photon emission requires temporal resolution higher than that of most commonly available cameras. However, improved detector technology enabled demonstrations of quantum enhanced super-resolution using fast detector arrays, such as single-photon avalanche diode arrays.
Nicole, C; Offerhaus, H.L; Vrakking, M.J.J; Lépine, F; Bordas, Ch. (2002). "Photoionization Microscopy". Physical Review Letters. 88 (13): 133001. Bibcode:2002PhRvL..88m3001N. doi:10.1103/PhysRevLett.88.133001. PMID 11955092. /wiki/Bibcode_(identifier)
Dvorsky, George (24 May 2013). "The First Image Ever of a Hydrogen Atom's Orbital Structure". io9. https://io9.gizmodo.com/the-first-image-ever-of-a-hydrogen-atoms-orbital-struc-509684901
Bordas, C; Lepine, F; Nicole, C; Vrakking, M.J.J (November 21, 2003). "Photoionization Microscopy". Physica Scripta. T110: 68–72. Bibcode:2004PhST..110...68B. doi:10.1238/Physica.Topical.110a00068. S2CID 32159559. /wiki/Bibcode_(identifier)
Smeenk, Christopher (2013-05-20). "Viewpoint: A New Look at the Hydrogen Wave Function". Physics. 6: 58. doi:10.1103/Physics.6.58. https://physics.aps.org/articles/v6/58
Wang, L; Yang, X.J; Liu, P.; Zhan, M.S; Delos, J.B (30 August 2010). "Photoionization microscopy of the hydrogen atom in parallel electric and magnetic fields". Physical Review A. 82 (2): 022514. Bibcode:2010PhRvA..82b2514W. doi:10.1103/PhysRevA.82.022514. S2CID 121584448. https://zenodo.org/record/895576
Deng, M. (2016-06-10). "Photoionization microscopy for a hydrogen atom in parallel electric and magnetic fields". Physical Review A. 93 (6): 063411. Bibcode:2016PhRvA..93f3411D. doi:10.1103/physreva.93.063411. https://zenodo.org/record/995653
Deng, M.; Gao, W.; Lu, Rong; Delos, J. B.; You, L.; Liu, H. P. (2016-06-10). "Photoionization microscopy for a hydrogen atom in parallel electric and magnetic fields". Physical Review A. 93 (6): 063411. Bibcode:2016PhRvA..93f3411D. doi:10.1103/PhysRevA.93.063411. https://doi.org/10.1103%2FPhysRevA.93.063411
Cohen, S.; Harb, M.M; Ollagnier, A.; Robicheaux, F.; Vrakking, M.J.J; Barillot, T; Le ́pine, F.; Bordas, C (3 May 2013). "Wave Function Microscopy of Quasibound Atomic States". Physical Review Letters. 110 (18): 183001. Bibcode:2013PhRvL.110r3001C. doi:10.1103/PhysRevLett.110.183001. PMID 23683194. S2CID 17922355. https://refubium.fu-berlin.de/handle/fub188/15539
Cohen, S.; Harb, M.M; Ollagnier, A.; Robicheaux, F.; Vrakking, M.J.J; Barillot, T; Le ́pine, F.; Bordas, C (3 May 2013). "Wave Function Microscopy of Quasibound Atomic States". Physical Review Letters. 110 (18): 183001. Bibcode:2013PhRvL.110r3001C. doi:10.1103/PhysRevLett.110.183001. PMID 23683194. S2CID 17922355. https://refubium.fu-berlin.de/handle/fub188/15539
Nicole, C; Offerhaus, H.L; Vrakking, M.J.J; Lépine, F; Bordas, Ch. (2002). "Photoionization Microscopy". Physical Review Letters. 88 (13): 133001. Bibcode:2002PhRvL..88m3001N. doi:10.1103/PhysRevLett.88.133001. PMID 11955092. /wiki/Bibcode_(identifier)
Nicole, C; Offerhaus, H.L; Vrakking, M.J.J; Lépine, F; Bordas, Ch. (2002). "Photoionization Microscopy". Physical Review Letters. 88 (13): 133001. Bibcode:2002PhRvL..88m3001N. doi:10.1103/PhysRevLett.88.133001. PMID 11955092. /wiki/Bibcode_(identifier)
Pegg, David (2006). "Photodetachment". Springer Handbook of Atomic, Molecular, and Optical Physics. pp. 891–899. doi:10.1007/978-0-387-26308-3_60. ISBN 978-0-387-20802-2. 978-0-387-20802-2
Blondel, C; Delsart, C; Dulieu, F (1996). "The Photodetachment Microscope". Physical Review Letters. 77 (18): 3755–3758. Bibcode:1996PhRvL..77.3755B. doi:10.1103/PhysRevLett.77.3755. PMID 10062300. /wiki/Bibcode_(identifier)
Nicole, C; Offerhaus, H.L; Vrakking, M.J.J; Lépine, F; Bordas, Ch. (2002). "Photoionization Microscopy". Physical Review Letters. 88 (13): 133001. Bibcode:2002PhRvL..88m3001N. doi:10.1103/PhysRevLett.88.133001. PMID 11955092. /wiki/Bibcode_(identifier)
Nicole, C; Offerhaus, H.L; Vrakking, M.J.J; Lépine, F; Bordas, Ch. (2002). "Photoionization Microscopy". Physical Review Letters. 88 (13): 133001. Bibcode:2002PhRvL..88m3001N. doi:10.1103/PhysRevLett.88.133001. PMID 11955092. /wiki/Bibcode_(identifier)
Lepine, F.; Bordas, C.H; Nicole, C.; Vrakking, M.J.J (2004). "Atomic photoionization processes under magnification". Physical Review Letters. 70 (3): 033417. Bibcode:2004PhRvA..70c3417L. doi:10.1103/PhysRevA.70.033417. /wiki/Bibcode_(identifier)
Nicole, C; Offerhaus, H.L; Vrakking, M.J.J; Lépine, F; Bordas, Ch. (2002). "Photoionization Microscopy". Physical Review Letters. 88 (13): 133001. Bibcode:2002PhRvL..88m3001N. doi:10.1103/PhysRevLett.88.133001. PMID 11955092. /wiki/Bibcode_(identifier)
Cohen, S.; Harb, M.M; Ollagnier, A.; Robicheaux, F.; Vrakking, M.J.J; Barillot, T; Le ́pine, F.; Bordas, C (3 May 2013). "Wave Function Microscopy of Quasibound Atomic States". Physical Review Letters. 110 (18): 183001. Bibcode:2013PhRvL.110r3001C. doi:10.1103/PhysRevLett.110.183001. PMID 23683194. S2CID 17922355. https://refubium.fu-berlin.de/handle/fub188/15539
Cohen, S.; Harb, M.M; Ollagnier, A.; Robicheaux, F.; Vrakking, M.J.J; Barillot, T; Le ́pine, F.; Bordas, C (3 May 2013). "Wave Function Microscopy of Quasibound Atomic States". Physical Review Letters. 110 (18): 183001. Bibcode:2013PhRvL.110r3001C. doi:10.1103/PhysRevLett.110.183001. PMID 23683194. S2CID 17922355. https://refubium.fu-berlin.de/handle/fub188/15539
Moyer, Curt (2014). "A unified theory of quasi bound stark states". AIP Advances. 4 (2): 027109. arXiv:1306.6619. Bibcode:2014AIPA....4b7109M. doi:10.1063/1.4865998. S2CID 96399535. /wiki/ArXiv_(identifier)
Cohen, S.; Harb, M.M; Ollagnier, A.; Robicheaux, F.; Vrakking, M.J.J; Barillot, T; Le ́pine, F.; Bordas, C (3 May 2013). "Wave Function Microscopy of Quasibound Atomic States". Physical Review Letters. 110 (18): 183001. Bibcode:2013PhRvL.110r3001C. doi:10.1103/PhysRevLett.110.183001. PMID 23683194. S2CID 17922355. https://refubium.fu-berlin.de/handle/fub188/15539
Smeenk, Christopher (2013-05-20). "Viewpoint: A New Look at the Hydrogen Wave Function". Physics. 6: 58. doi:10.1103/Physics.6.58. https://physics.aps.org/articles/v6/58
Stodolna, A.S; Rouzee, A; Lepine, F; Cohen, S; Robicheaux, F.; Gijsbertsen, A.; Jungmann, J.H; Bordas, C; Vrakking, M.J.J (2013). "Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States". Physical Review Letters. 110 (21): 213001. Bibcode:2013PhRvL.110u3001S. doi:10.1103/PhysRevLett.110.213001. PMID 23745864. https://doi.org/10.1103%2FPhysRevLett.110.213001
Smeenk, Christopher (2013-05-20). "Viewpoint: A New Look at the Hydrogen Wave Function". Physics. 6: 58. doi:10.1103/Physics.6.58. https://physics.aps.org/articles/v6/58
Nicole, C; Offerhaus, H.L; Vrakking, M.J.J; Lépine, F; Bordas, Ch. (2002). "Photoionization Microscopy". Physical Review Letters. 88 (13): 133001. Bibcode:2002PhRvL..88m3001N. doi:10.1103/PhysRevLett.88.133001. PMID 11955092. /wiki/Bibcode_(identifier)
Ono, Takafumi; Okamoto, R.; Takeushi, S. (2013). "An entanglement-enhanced microscope". Nature Communications. 4: 2426. arXiv:1401.8075. Bibcode:2013NatCo...4.2426O. doi:10.1038/ncomms3426. PMID 24026165. S2CID 11495685. /wiki/ArXiv_(identifier)
Israel, Y.; Rosen, S.; Silberberg, Y. (2014). "Supersensitive Polarization Microscopy Using NOON States of Light". Physical Review Letters. 112 (10): 103604. Bibcode:2014PhRvL.112j3604I. doi:10.1103/PhysRevLett.112.103604. PMID 24679294. /wiki/Bibcode_(identifier)
Ono, Takafumi; Okamoto, R.; Takeushi, S. (2013). "An entanglement-enhanced microscope". Nature Communications. 4: 2426. arXiv:1401.8075. Bibcode:2013NatCo...4.2426O. doi:10.1038/ncomms3426. PMID 24026165. S2CID 11495685. /wiki/ArXiv_(identifier)
Orcutt, Matt. "World's First Entanglement-Enhanced Microscope". MIT Technology Review. https://www.technologyreview.com/s/524521/worlds-first-entanglement-enhanced-microscope/
Ono, Takafumi; Okamoto, R.; Takeushi, S. (2013). "An entanglement-enhanced microscope". Nature Communications. 4: 2426. arXiv:1401.8075. Bibcode:2013NatCo...4.2426O. doi:10.1038/ncomms3426. PMID 24026165. S2CID 11495685. /wiki/ArXiv_(identifier)
Israel, Y.; Rosen, S.; Silberberg, Y. (2014). "Supersensitive Polarization Microscopy Using NOON States of Light". Physical Review Letters. 112 (10): 103604. Bibcode:2014PhRvL.112j3604I. doi:10.1103/PhysRevLett.112.103604. PMID 24679294. /wiki/Bibcode_(identifier)
Teich, M.C.; Saleh, B.E.A. (1997). "Entangled-Photon Microscopy". Ceskoslovensky Casopis Pro Fyziku. 47: 3–8.
Ono, Takafumi; Okamoto, R.; Takeushi, S. (2013). "An entanglement-enhanced microscope". Nature Communications. 4: 2426. arXiv:1401.8075. Bibcode:2013NatCo...4.2426O. doi:10.1038/ncomms3426. PMID 24026165. S2CID 11495685. /wiki/ArXiv_(identifier)
Israel, Y.; Rosen, S.; Silberberg, Y. (2014). "Supersensitive Polarization Microscopy Using NOON States of Light". Physical Review Letters. 112 (10): 103604. Bibcode:2014PhRvL.112j3604I. doi:10.1103/PhysRevLett.112.103604. PMID 24679294. /wiki/Bibcode_(identifier)
Taylor, Michael A.; Janousek, Jiri; Daria, Vincent; Knittel, Joachim; Hage, Boris; Bachor, Hans-A.; Bowen, Warwick P. (March 2013). "Biological measurement beyond the quantum limit". Nature Photonics. 7 (3): 229–233. arXiv:1206.6928. Bibcode:2013NaPho...7..229T. doi:10.1038/nphoton.2012.346. S2CID 21016247. /wiki/ArXiv_(identifier)
Taylor, Michael A.; Janousek, Jiri; Daria, Vincent; Knittel, Joachim; Hage, Boris; Bachor, Hans-A.; Bowen, Warwick P. (4 February 2014). "Subdiffraction-Limited Quantum Imaging within a Living Cell". Physical Review X. 4 (1): 011017. arXiv:1305.1353. Bibcode:2014PhRvX...4a1017T. doi:10.1103/PhysRevX.4.011017. S2CID 88506197. /wiki/ArXiv_(identifier)
Casacio, Catxere A.; Madsen, Lars S.; Terrasson, Alex; Waleed, Muhammad; Barnscheidt, Kai; Hage, Boris; Taylor, Michael A.; Bowen, Warwick P. (10 June 2021). "Quantum-enhanced nonlinear microscopy". Nature. 594 (7862): 201–206. Bibcode:2021Natur.594..201C. doi:10.1038/s41586-021-03528-w. PMID 34108694. S2CID 235395587. /wiki/Bibcode_(identifier)
Casacio, Catxere A.; Madsen, Lars S.; Terrasson, Alex; Waleed, Muhammad; Barnscheidt, Kai; Hage, Boris; Taylor, Michael A.; Bowen, Warwick P. (10 June 2021). "Quantum-enhanced nonlinear microscopy". Nature. 594 (7862): 201–206. Bibcode:2021Natur.594..201C. doi:10.1038/s41586-021-03528-w. PMID 34108694. S2CID 235395587. /wiki/Bibcode_(identifier)
Taylor, Michael A.; Janousek, Jiri; Daria, Vincent; Knittel, Joachim; Hage, Boris; Bachor, Hans-A.; Bowen, Warwick P. (March 2013). "Biological measurement beyond the quantum limit". Nature Photonics. 7 (3): 229–233. arXiv:1206.6928. Bibcode:2013NaPho...7..229T. doi:10.1038/nphoton.2012.346. S2CID 21016247. /wiki/ArXiv_(identifier)
Taylor, Michael A.; Janousek, Jiri; Daria, Vincent; Knittel, Joachim; Hage, Boris; Bachor, Hans-A.; Bowen, Warwick P. (4 February 2014). "Subdiffraction-Limited Quantum Imaging within a Living Cell". Physical Review X. 4 (1): 011017. arXiv:1305.1353. Bibcode:2014PhRvX...4a1017T. doi:10.1103/PhysRevX.4.011017. S2CID 88506197. /wiki/ArXiv_(identifier)
Casacio, Catxere A.; Madsen, Lars S.; Terrasson, Alex; Waleed, Muhammad; Barnscheidt, Kai; Hage, Boris; Taylor, Michael A.; Bowen, Warwick P. (10 June 2021). "Quantum-enhanced nonlinear microscopy". Nature. 594 (7862): 201–206. Bibcode:2021Natur.594..201C. doi:10.1038/s41586-021-03528-w. PMID 34108694. S2CID 235395587. /wiki/Bibcode_(identifier)
Casacio, Catxere A.; Madsen, Lars S.; Terrasson, Alex; Waleed, Muhammad; Barnscheidt, Kai; Hage, Boris; Taylor, Michael A.; Bowen, Warwick P. (10 June 2021). "Quantum-enhanced nonlinear microscopy". Nature. 594 (7862): 201–206. Bibcode:2021Natur.594..201C. doi:10.1038/s41586-021-03528-w. PMID 34108694. S2CID 235395587. /wiki/Bibcode_(identifier)
Schwartz, O.; Oron, D. (16 March 2012). "Improved resolution in fluorescence microscopy using quantum correlations". Physical Review A. 85 (3): 033812. arXiv:1101.5013. Bibcode:2012PhRvA..85c3812S. doi:10.1103/PhysRevA.85.033812. /wiki/ArXiv_(identifier)
Cui, J.-M; Sun, F.-W; Chen, X.-D.; Gong, Z.-J.; Gou, G.-C. (9 April 2013). "Quantum Statistical Imaging of Particles without Restriction of the Diffraction Limit". Physical Review Letters. 110 (15): 153901. arXiv:1210.2477. Bibcode:2013PhRvL.110o3901C. doi:10.1103/PhysRevLett.110.153901. PMID 25167270. S2CID 36890440. /wiki/ArXiv_(identifier)
Schwartz, O.; Levitt, J.M.; Tenne, R.; Itzhakov, S.; Deutsch, Z.; Oron, D. (6 November 2013). "Superresolution Microscopy with Quantum Emitters". Nano Letters. 13 (12): 5832–6. Bibcode:2013NanoL..13.5832S. doi:10.1021/nl402552m. PMID 24195698. https://www.nature.com/articles/ncomms14786
Gatto Monticonei, D.; Katamadze, K.; Traina, p.; Moreva, E.; Forneris, J.; Ruo-Berchera, I.; Olivero, P.; Degiovanni, I.P.; Brida, G.; Genovese, M. (30 September 2014). "Beating the Abbe Diffraction Limit in Confocal Microscopy via Nonclassical Photon Statistics". Physical Review Letters. 113 (14): 143602. arXiv:1406.3251. Bibcode:2014PhRvL.113n3602G. doi:10.1103/PhysRevLett.113.143602. hdl:2318/149810. PMID 25325642. S2CID 2683461. /wiki/ArXiv_(identifier)
Israel, Y.; Tenne, R.; Oron, D.; Silberberg, Y. (13 March 2017). "Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera". Nature Communications. 8: 14786. Bibcode:2017NatCo...814786I. doi:10.1038/ncomms14786. PMC 5355801. PMID 28287167. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355801
Casacio, Catxere A.; Madsen, Lars S.; Terrasson, Alex; Waleed, Muhammad; Barnscheidt, Kai; Hage, Boris; Taylor, Michael A.; Bowen, Warwick P. (10 June 2021). "Quantum-enhanced nonlinear microscopy". Nature. 594 (7862): 201–206. Bibcode:2021Natur.594..201C. doi:10.1038/s41586-021-03528-w. PMID 34108694. S2CID 235395587. /wiki/Bibcode_(identifier)
Stodolna, A. S.; Rouzée, A.; Lépine, F.; Cohen, S.; Robicheaux, F.; Gijsbertsen, A.; Jungmann, J. H.; Bordas, C.; Vrakking, M. J. J. (20 May 2013). "Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States". Physical Review Letters. 110 (21): 213001. Bibcode:2013PhRvL.110u3001S. doi:10.1103/PhysRevLett.110.213001. PMID 23745864. https://physics.aps.org/articles/v6/58