Let ( X t ) t ∈ T {\displaystyle (X_{t})_{t\in T}} be a stochastic process. In most cases, T = N {\displaystyle T=\mathbb {N} } or T = R + {\displaystyle T=\mathbb {R} ^{+}} . Then the stochastic process has independent increments if and only if for every m ∈ N {\displaystyle m\in \mathbb {N} } and any choice t 0 , t 1 , t 2 , … , t m − 1 , t m ∈ T {\displaystyle t_{0},t_{1},t_{2},\dots ,t_{m-1},t_{m}\in T} with
the random variables
are stochastically independent.2
A random measure ξ {\displaystyle \xi } has got independent increments if and only if the random variables ξ ( B 1 ) , ξ ( B 2 ) , … , ξ ( B m ) {\displaystyle \xi (B_{1}),\xi (B_{2}),\dots ,\xi (B_{m})} are stochastically independent for every selection of pairwise disjoint measurable sets B 1 , B 2 , … , B m {\displaystyle B_{1},B_{2},\dots ,B_{m}} and every m ∈ N {\displaystyle m\in \mathbb {N} } . 3
Let ξ {\displaystyle \xi } be a random measure on S × T {\displaystyle S\times T} and define for every bounded measurable set B {\displaystyle B} the random measure ξ B {\displaystyle \xi _{B}} on T {\displaystyle T} as
Then ξ {\displaystyle \xi } is called a random measure with independent S-increments, if for all bounded sets B 1 , B 2 , … , B n {\displaystyle B_{1},B_{2},\dots ,B_{n}} and all n ∈ N {\displaystyle n\in \mathbb {N} } the random measures ξ B 1 , ξ B 2 , … , ξ B n {\displaystyle \xi _{B_{1}},\xi _{B_{2}},\dots ,\xi _{B_{n}}} are independent.4
Independent increments are a basic property of many stochastic processes and are often incorporated in their definition. The notion of independent increments and independent S-increments of random measures plays an important role in the characterization of Poisson point process and infinite divisibility.
Sato, Ken-Ito (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press. pp. 31–68. ISBN 9780521553025. 9780521553025 ↩
Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 190. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6. 978-1-84800-047-6 ↩
Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 527. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6. 978-1-84800-047-6 ↩
Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. p. 87. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3. 978-3-319-41596-3 ↩